{"title":"电子结构计算的单参考耦合簇法分析:全耦合簇方程","authors":"Hassan, Muhammad, Maday, Yvon, Wang, Yipeng","doi":"10.1007/s00211-023-01371-x","DOIUrl":null,"url":null,"abstract":"Abstract The central problem in electronic structure theory is the computation of the eigenvalues of the electronic Hamiltonian—a semi-unbounded, self-adjoint operator acting on an $$L^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> -type Hilbert space of antisymmetric functions. Coupled cluster (CC) methods, which are based on a non-linear parameterisation of the sought-after eigenfunction and result in non-linear systems of equations, are the method of choice for high-accuracy quantum chemical simulations. The existing numerical analysis of coupled cluster methods relies on a local, strong monotonicity property of the CC function that is valid only in a perturbative regime, i.e., when the sought-after ground state CC solution is sufficiently close to zero. In this article, we introduce a new well-posedness analysis for the single reference coupled cluster method based on the invertibility of the CC derivative. Under the minimal assumption that the sought-after eigenfunction is intermediately normalisable and the associated eigenvalue is isolated and non-degenerate, we prove that the continuous (infinite-dimensional) CC equations are always locally well-posed. Under the same minimal assumptions and provided that the discretisation is fine enough, we prove that the discrete Full-CC equations are locally well-posed, and we derive residual-based error estimates with guaranteed positive constants. Preliminary numerical experiments indicate that the constants that appear in our estimates are a significant improvement over those obtained from the local monotonicity approach.","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the single reference coupled cluster method for electronic structure calculations: the full-coupled cluster equations\",\"authors\":\"Hassan, Muhammad, Maday, Yvon, Wang, Yipeng\",\"doi\":\"10.1007/s00211-023-01371-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The central problem in electronic structure theory is the computation of the eigenvalues of the electronic Hamiltonian—a semi-unbounded, self-adjoint operator acting on an $$L^2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> -type Hilbert space of antisymmetric functions. Coupled cluster (CC) methods, which are based on a non-linear parameterisation of the sought-after eigenfunction and result in non-linear systems of equations, are the method of choice for high-accuracy quantum chemical simulations. The existing numerical analysis of coupled cluster methods relies on a local, strong monotonicity property of the CC function that is valid only in a perturbative regime, i.e., when the sought-after ground state CC solution is sufficiently close to zero. In this article, we introduce a new well-posedness analysis for the single reference coupled cluster method based on the invertibility of the CC derivative. Under the minimal assumption that the sought-after eigenfunction is intermediately normalisable and the associated eigenvalue is isolated and non-degenerate, we prove that the continuous (infinite-dimensional) CC equations are always locally well-posed. Under the same minimal assumptions and provided that the discretisation is fine enough, we prove that the discrete Full-CC equations are locally well-posed, and we derive residual-based error estimates with guaranteed positive constants. Preliminary numerical experiments indicate that the constants that appear in our estimates are a significant improvement over those obtained from the local monotonicity approach.\",\"PeriodicalId\":49733,\"journal\":{\"name\":\"Numerische Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerische Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-023-01371-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00211-023-01371-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Analysis of the single reference coupled cluster method for electronic structure calculations: the full-coupled cluster equations
Abstract The central problem in electronic structure theory is the computation of the eigenvalues of the electronic Hamiltonian—a semi-unbounded, self-adjoint operator acting on an $$L^2$$ L2 -type Hilbert space of antisymmetric functions. Coupled cluster (CC) methods, which are based on a non-linear parameterisation of the sought-after eigenfunction and result in non-linear systems of equations, are the method of choice for high-accuracy quantum chemical simulations. The existing numerical analysis of coupled cluster methods relies on a local, strong monotonicity property of the CC function that is valid only in a perturbative regime, i.e., when the sought-after ground state CC solution is sufficiently close to zero. In this article, we introduce a new well-posedness analysis for the single reference coupled cluster method based on the invertibility of the CC derivative. Under the minimal assumption that the sought-after eigenfunction is intermediately normalisable and the associated eigenvalue is isolated and non-degenerate, we prove that the continuous (infinite-dimensional) CC equations are always locally well-posed. Under the same minimal assumptions and provided that the discretisation is fine enough, we prove that the discrete Full-CC equations are locally well-posed, and we derive residual-based error estimates with guaranteed positive constants. Preliminary numerical experiments indicate that the constants that appear in our estimates are a significant improvement over those obtained from the local monotonicity approach.
期刊介绍:
Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers:
1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis)
2. Optimization and Control Theory
3. Mathematical Modeling
4. The mathematical aspects of Scientific Computing