改善智慧城市空气质量的污染物时间序列分析

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Raúl López-Blanco, Miguel Chaveinte García, Ricardo S. Alonso, Javier Prieto, Juan M. Corchado
{"title":"改善智慧城市空气质量的污染物时间序列分析","authors":"Raúl López-Blanco, Miguel Chaveinte García, Ricardo S. Alonso, Javier Prieto, Juan M. Corchado","doi":"10.9781/ijimai.2023.08.005","DOIUrl":null,"url":null,"abstract":"The evolution towards Smart Cities is the process that many urban centers are following in their quest for efficiency, resource optimization and sustainable growth. This step forward in the continuous improvement of cities is closely linked to the quality of life they want to offer their citizens. One of the key issues that can have the greatest impact on the quality of life of all city dwellers is the quality of the air they breathe, which can lead to illnesses caused by pollutants in the air. The application of new technologies, such as the Internet of Things, Big Data and Artificial Intelligence, makes it possible to obtain increasingly abundant and accurate data on what is happening in cities, providing more information to take informed action based on scientific data. This article studies the evolution of pollutants in the main cities of Castilla y León, using Generative Additive Models (GAM), which have proven to be the most efficient for making predictions with detailed historical data and which have very strong seasonalities. The results of this study conclude that during the COVID-19 pandemic containment period, there was an overall reduction in the concentration of pollutants.","PeriodicalId":48602,"journal":{"name":"International Journal of Interactive Multimedia and Artificial Intelligence","volume":"91 1","pages":"0"},"PeriodicalIF":3.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pollutant Time Series Analysis for Improving Air-Quality in Smart Cities\",\"authors\":\"Raúl López-Blanco, Miguel Chaveinte García, Ricardo S. Alonso, Javier Prieto, Juan M. Corchado\",\"doi\":\"10.9781/ijimai.2023.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evolution towards Smart Cities is the process that many urban centers are following in their quest for efficiency, resource optimization and sustainable growth. This step forward in the continuous improvement of cities is closely linked to the quality of life they want to offer their citizens. One of the key issues that can have the greatest impact on the quality of life of all city dwellers is the quality of the air they breathe, which can lead to illnesses caused by pollutants in the air. The application of new technologies, such as the Internet of Things, Big Data and Artificial Intelligence, makes it possible to obtain increasingly abundant and accurate data on what is happening in cities, providing more information to take informed action based on scientific data. This article studies the evolution of pollutants in the main cities of Castilla y León, using Generative Additive Models (GAM), which have proven to be the most efficient for making predictions with detailed historical data and which have very strong seasonalities. The results of this study conclude that during the COVID-19 pandemic containment period, there was an overall reduction in the concentration of pollutants.\",\"PeriodicalId\":48602,\"journal\":{\"name\":\"International Journal of Interactive Multimedia and Artificial Intelligence\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Interactive Multimedia and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9781/ijimai.2023.08.005\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Interactive Multimedia and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9781/ijimai.2023.08.005","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pollutant Time Series Analysis for Improving Air-Quality in Smart Cities
The evolution towards Smart Cities is the process that many urban centers are following in their quest for efficiency, resource optimization and sustainable growth. This step forward in the continuous improvement of cities is closely linked to the quality of life they want to offer their citizens. One of the key issues that can have the greatest impact on the quality of life of all city dwellers is the quality of the air they breathe, which can lead to illnesses caused by pollutants in the air. The application of new technologies, such as the Internet of Things, Big Data and Artificial Intelligence, makes it possible to obtain increasingly abundant and accurate data on what is happening in cities, providing more information to take informed action based on scientific data. This article studies the evolution of pollutants in the main cities of Castilla y León, using Generative Additive Models (GAM), which have proven to be the most efficient for making predictions with detailed historical data and which have very strong seasonalities. The results of this study conclude that during the COVID-19 pandemic containment period, there was an overall reduction in the concentration of pollutants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
11.10%
发文量
47
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信