进化出一种缓解应激反应的途径来改变生命的基本化学成分

Isabella Tolle, Stefan Oehm, Michael Georg Hoesl, Christin Treiber-Kleinke, Lauri Peil, Mihaela Bozukova, Suki Albers, Abdul-Rahman Adamu Bukari, Torsten Semmler, Juri Rappsilber, Zoya Ignatova, Aleeza C. Gerstein, Nediljko Budisa
{"title":"进化出一种缓解应激反应的途径来改变生命的基本化学成分","authors":"Isabella Tolle, Stefan Oehm, Michael Georg Hoesl, Christin Treiber-Kleinke, Lauri Peil, Mihaela Bozukova, Suki Albers, Abdul-Rahman Adamu Bukari, Torsten Semmler, Juri Rappsilber, Zoya Ignatova, Aleeza C. Gerstein, Nediljko Budisa","doi":"10.3389/fsybi.2023.1248065","DOIUrl":null,"url":null,"abstract":"Despite billions of years of evolution, there have been only minor changes in the number and types of proteinogenic amino acids and the standard genetic code with codon assignments across the three domains of life. The rigidity of the genetic code sets it apart from other aspects of organismal evolution, giving rise to key questions about its origins and the constraints it places on innovation in translation. Through adaptive laboratory evolution (ALE) in Escherichia coli , we aimed to replace tryptophan (Trp) in the genetic code with an analogue L-β-(thieno[3,2-b]pyrrolyl)alanine ([3,2]Tpa). This required Escherichia coli to recruit thienopyrrole instead of indole and allowed reassignment of UGG codons. Crossing the stress response system emerged as a major obstacle for ancestral growth in the presence of [3,2]Tp and Trp limitation. During ALE, a pivotal innovation was the deactivation of the master regulon RpoS, which allowed growth solely in the presence of [3,2]Tp in minimal medium. Notably, knocking out the rpoS gene in the ancestral strain also facilitated growth on [3,2]Tp. Our findings suggest that regulatory constraints, not just a rigid translation mechanism, guard Life’s canonical amino acid repertoire. This knowledge will not only facilitate the design of more effective synthetic amino acid incorporation systems but may also shed light on a general biological mechanism trapping organismal configurations in a status quo .","PeriodicalId":492179,"journal":{"name":"Frontiers in Synthetic Biology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolving a mitigation of the stress response pathway to change the basic chemistry of life\",\"authors\":\"Isabella Tolle, Stefan Oehm, Michael Georg Hoesl, Christin Treiber-Kleinke, Lauri Peil, Mihaela Bozukova, Suki Albers, Abdul-Rahman Adamu Bukari, Torsten Semmler, Juri Rappsilber, Zoya Ignatova, Aleeza C. Gerstein, Nediljko Budisa\",\"doi\":\"10.3389/fsybi.2023.1248065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite billions of years of evolution, there have been only minor changes in the number and types of proteinogenic amino acids and the standard genetic code with codon assignments across the three domains of life. The rigidity of the genetic code sets it apart from other aspects of organismal evolution, giving rise to key questions about its origins and the constraints it places on innovation in translation. Through adaptive laboratory evolution (ALE) in Escherichia coli , we aimed to replace tryptophan (Trp) in the genetic code with an analogue L-β-(thieno[3,2-b]pyrrolyl)alanine ([3,2]Tpa). This required Escherichia coli to recruit thienopyrrole instead of indole and allowed reassignment of UGG codons. Crossing the stress response system emerged as a major obstacle for ancestral growth in the presence of [3,2]Tp and Trp limitation. During ALE, a pivotal innovation was the deactivation of the master regulon RpoS, which allowed growth solely in the presence of [3,2]Tp in minimal medium. Notably, knocking out the rpoS gene in the ancestral strain also facilitated growth on [3,2]Tp. Our findings suggest that regulatory constraints, not just a rigid translation mechanism, guard Life’s canonical amino acid repertoire. This knowledge will not only facilitate the design of more effective synthetic amino acid incorporation systems but may also shed light on a general biological mechanism trapping organismal configurations in a status quo .\",\"PeriodicalId\":492179,\"journal\":{\"name\":\"Frontiers in Synthetic Biology\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Synthetic Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fsybi.2023.1248065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsybi.2023.1248065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尽管经历了数十亿年的进化,但在蛋白质生成氨基酸的数量和类型以及在生命的三个领域中带有密码子分配的标准遗传密码方面,只有很小的变化。遗传密码的刚性使其与生物进化的其他方面区别开来,引发了关于其起源的关键问题,以及它对翻译创新的限制。通过大肠杆菌的适应性实验室进化(ALE),我们的目标是用类似物L-β-(噻吩[3,2-b]吡咯基)丙氨酸([3,2]Tpa)取代遗传密码中的色氨酸(Trp)。这需要大肠杆菌招募噻吩吡咯而不是吲哚,并允许UGG密码子的重新分配。在Tp和Trp存在限制的情况下[3,2],穿越胁迫反应系统成为祖先生长的主要障碍。在ALE过程中,一个关键的创新是主调控子RpoS的失活,它允许仅在最小培养基中存在[3,2]Tp的情况下生长。值得注意的是,敲除祖先菌株的rpoS基因也促进了Tp上的生长[3,2]。我们的研究结果表明,调控约束,而不仅仅是一个严格的翻译机制,保护着生命的规范氨基酸库。这一知识不仅将有助于设计更有效的合成氨基酸结合系统,而且还可能揭示在现状中捕获有机结构的一般生物机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving a mitigation of the stress response pathway to change the basic chemistry of life
Despite billions of years of evolution, there have been only minor changes in the number and types of proteinogenic amino acids and the standard genetic code with codon assignments across the three domains of life. The rigidity of the genetic code sets it apart from other aspects of organismal evolution, giving rise to key questions about its origins and the constraints it places on innovation in translation. Through adaptive laboratory evolution (ALE) in Escherichia coli , we aimed to replace tryptophan (Trp) in the genetic code with an analogue L-β-(thieno[3,2-b]pyrrolyl)alanine ([3,2]Tpa). This required Escherichia coli to recruit thienopyrrole instead of indole and allowed reassignment of UGG codons. Crossing the stress response system emerged as a major obstacle for ancestral growth in the presence of [3,2]Tp and Trp limitation. During ALE, a pivotal innovation was the deactivation of the master regulon RpoS, which allowed growth solely in the presence of [3,2]Tp in minimal medium. Notably, knocking out the rpoS gene in the ancestral strain also facilitated growth on [3,2]Tp. Our findings suggest that regulatory constraints, not just a rigid translation mechanism, guard Life’s canonical amino acid repertoire. This knowledge will not only facilitate the design of more effective synthetic amino acid incorporation systems but may also shed light on a general biological mechanism trapping organismal configurations in a status quo .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信