Cox-Ingersoll-Ross过程半群的随机网格高阶逼近

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Aurélien Alfonsi, Edoardo Lombardo
{"title":"Cox-Ingersoll-Ross过程半群的随机网格高阶逼近","authors":"Aurélien Alfonsi, Edoardo Lombardo","doi":"10.1093/imanum/drad059","DOIUrl":null,"url":null,"abstract":"Abstract We present new high order approximations schemes for the Cox–Ingersoll–Ross (CIR) process that are obtained by using a recent technique developed by Alfonsi and Bally (2021, A generic construction for high order approximation schemes of semigroups using random grids. Numer. Math., 148, 743–793) for the approximation of semigroups. The idea consists in using a suitable combination of discretization schemes calculated on different random grids to increase the order of convergence. This technique coupled with the second order scheme proposed by Alfonsi (2010, High order discretization schemes for the CIR process: application to affine term structure and Heston models. Math. Comp., 79, 209–237) for the CIR leads to weak approximations of order $2k$, for all $k\\in{{\\mathbb{N}}}^{\\ast }$. Despite the singularity of the square-root volatility coefficient, we show rigorously this order of convergence under some restrictions on the volatility parameters. We illustrate numerically the convergence of these approximations for the CIR process and for the Heston stochastic volatility model and show the computational time gain they give.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High order approximations of the Cox–Ingersoll–Ross process semigroup using random grids\",\"authors\":\"Aurélien Alfonsi, Edoardo Lombardo\",\"doi\":\"10.1093/imanum/drad059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present new high order approximations schemes for the Cox–Ingersoll–Ross (CIR) process that are obtained by using a recent technique developed by Alfonsi and Bally (2021, A generic construction for high order approximation schemes of semigroups using random grids. Numer. Math., 148, 743–793) for the approximation of semigroups. The idea consists in using a suitable combination of discretization schemes calculated on different random grids to increase the order of convergence. This technique coupled with the second order scheme proposed by Alfonsi (2010, High order discretization schemes for the CIR process: application to affine term structure and Heston models. Math. Comp., 79, 209–237) for the CIR leads to weak approximations of order $2k$, for all $k\\\\in{{\\\\mathbb{N}}}^{\\\\ast }$. Despite the singularity of the square-root volatility coefficient, we show rigorously this order of convergence under some restrictions on the volatility parameters. We illustrate numerically the convergence of these approximations for the CIR process and for the Heston stochastic volatility model and show the computational time gain they give.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drad059\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imanum/drad059","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的Cox-Ingersoll-Ross (CIR)过程的高阶近似格式,该格式是利用Alfonsi和Bally(2021)最近开发的技术获得的,这是一种使用随机网格的半群高阶近似格式的一般构造。号码。数学。半群的近似。数学学报,14,743-793)。其思想在于使用在不同随机网格上计算的离散化方案的适当组合来提高收敛阶。该技术与Alfonsi(2010)提出的二阶方案相结合,CIR过程的高阶离散化方案:应用于仿射期限结构和Heston模型。数学。对于{{\mathbb{N}}}^{\ast}$中的所有$k, Comp., 79, 209-237)对于CIR的弱近似为$2k$。尽管平方根波动系数具有奇异性,但在波动参数的某些限制下,我们严格地证明了这种收敛顺序。我们用数值说明了CIR过程和赫斯顿随机波动模型的这些近似的收敛性,并显示了它们给出的计算时间增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High order approximations of the Cox–Ingersoll–Ross process semigroup using random grids
Abstract We present new high order approximations schemes for the Cox–Ingersoll–Ross (CIR) process that are obtained by using a recent technique developed by Alfonsi and Bally (2021, A generic construction for high order approximation schemes of semigroups using random grids. Numer. Math., 148, 743–793) for the approximation of semigroups. The idea consists in using a suitable combination of discretization schemes calculated on different random grids to increase the order of convergence. This technique coupled with the second order scheme proposed by Alfonsi (2010, High order discretization schemes for the CIR process: application to affine term structure and Heston models. Math. Comp., 79, 209–237) for the CIR leads to weak approximations of order $2k$, for all $k\in{{\mathbb{N}}}^{\ast }$. Despite the singularity of the square-root volatility coefficient, we show rigorously this order of convergence under some restrictions on the volatility parameters. We illustrate numerically the convergence of these approximations for the CIR process and for the Heston stochastic volatility model and show the computational time gain they give.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信