涉及素数的平方和立方的沃林-哥德巴赫问题的细长例外集

IF 0.8 4区 数学 Q2 MATHEMATICS
Xue Han, Huafeng Liu
{"title":"涉及素数的平方和立方的沃林-哥德巴赫问题的细长例外集","authors":"Xue Han, Huafeng Liu","doi":"10.4213/sm9689e","DOIUrl":null,"url":null,"abstract":"Let $p_{1},p_{2},…,p_{6}$ be prime numbers. First we show that, with at most $O(N^{1/12+\\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_{1}^{2}+p_{2}^{2}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}$, which improves the previous result $O(N^{1/4+\\varepsilon})$ obtained by Y. H. Liu. Moreover, we also prove that, with at most $O(N^{5/12+\\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}$. Bibliography: 21 titles.","PeriodicalId":49573,"journal":{"name":"Sbornik Mathematics","volume":"13 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slim exceptional sets of Waring-Goldbach problems involving squares and cubes of primes\",\"authors\":\"Xue Han, Huafeng Liu\",\"doi\":\"10.4213/sm9689e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p_{1},p_{2},…,p_{6}$ be prime numbers. First we show that, with at most $O(N^{1/12+\\\\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_{1}^{2}+p_{2}^{2}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}$, which improves the previous result $O(N^{1/4+\\\\varepsilon})$ obtained by Y. H. Liu. Moreover, we also prove that, with at most $O(N^{5/12+\\\\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}$. Bibliography: 21 titles.\",\"PeriodicalId\":49573,\"journal\":{\"name\":\"Sbornik Mathematics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sbornik Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/sm9689e\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sbornik Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/sm9689e","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$p_{1},p_{2},…,p_{6}$为素数。首先证明了在不超过$O(N^{1/12+\varepsilon})$例外情况下,所有不超过$N$的偶数正整数都可以用$p_{1}^{2}+p_{2} +p_{3} +p_{4}^{3}+p_{5}^{3}+p_{6}^{3}$的形式表示,从而改进了刘英华先前得到的结果$O(N^{1/4+\varepsilon})$。此外,我们还证明了在不超过$O(N^{5/12+\varepsilon})$例外情况下,所有不超过$N$的偶数正整数都可以表示为$p_{1}^{2}+p_{2}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}$。参考书目:21篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slim exceptional sets of Waring-Goldbach problems involving squares and cubes of primes
Let $p_{1},p_{2},…,p_{6}$ be prime numbers. First we show that, with at most $O(N^{1/12+\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_{1}^{2}+p_{2}^{2}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}$, which improves the previous result $O(N^{1/4+\varepsilon})$ obtained by Y. H. Liu. Moreover, we also prove that, with at most $O(N^{5/12+\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}$. Bibliography: 21 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sbornik Mathematics
Sbornik Mathematics 数学-数学
CiteScore
1.40
自引率
12.50%
发文量
37
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The journal has always maintained the highest scientific level in a wide area of mathematics with special attention to current developments in: Mathematical analysis Ordinary differential equations Partial differential equations Mathematical physics Geometry Algebra Functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信