双曲平面的多米诺问题是不可判定的:新的证明

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Maurice Margenstern
{"title":"双曲平面的多米诺问题是不可判定的:新的证明","authors":"Maurice Margenstern","doi":"10.25088/complexsystems.32.1.19","DOIUrl":null,"url":null,"abstract":"The present paper revisits the proof given in a paper of the author published in 2008 proving that the general tiling problem of the hyperbolic plane is algorithmically unsolvable by proving a slightly stronger version using only a regular polygon as the basic shape of the tiles. The problem was raised by a paper of Raphael Robinson in 1971, in his famous simplified proof that the general tiling problem is algorithmically unsolvable for the Euclidean plane, initially proved by Robert Berger in 1966. The present construction improves that of the 2008 paper. It also very strongly reduces the number of prototiles.","PeriodicalId":46935,"journal":{"name":"Complex Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Domino Problem of the Hyperbolic Plane Is Undecidable: New Proof\",\"authors\":\"Maurice Margenstern\",\"doi\":\"10.25088/complexsystems.32.1.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper revisits the proof given in a paper of the author published in 2008 proving that the general tiling problem of the hyperbolic plane is algorithmically unsolvable by proving a slightly stronger version using only a regular polygon as the basic shape of the tiles. The problem was raised by a paper of Raphael Robinson in 1971, in his famous simplified proof that the general tiling problem is algorithmically unsolvable for the Euclidean plane, initially proved by Robert Berger in 1966. The present construction improves that of the 2008 paper. It also very strongly reduces the number of prototiles.\",\"PeriodicalId\":46935,\"journal\":{\"name\":\"Complex Systems\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25088/complexsystems.32.1.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25088/complexsystems.32.1.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文回顾了作者在2008年发表的一篇论文中给出的证明,通过证明一个稍微强一点的版本,仅使用正多边形作为瓦片的基本形状,证明了双曲平面的一般瓦片问题在算法上是不可解的。这个问题是Raphael Robinson在1971年的一篇论文中提出的,在他著名的简化证明中,一般的平铺问题在欧几里得平面上是算法上无法解决的,最初是由Robert Berger在1966年证明的。本文的结构改进了2008年论文的结构。它还极大地减少了原细胞的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Domino Problem of the Hyperbolic Plane Is Undecidable: New Proof
The present paper revisits the proof given in a paper of the author published in 2008 proving that the general tiling problem of the hyperbolic plane is algorithmically unsolvable by proving a slightly stronger version using only a regular polygon as the basic shape of the tiles. The problem was raised by a paper of Raphael Robinson in 1971, in his famous simplified proof that the general tiling problem is algorithmically unsolvable for the Euclidean plane, initially proved by Robert Berger in 1966. The present construction improves that of the 2008 paper. It also very strongly reduces the number of prototiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex Systems
Complex Systems MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
1.80
自引率
25.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信