避免无限算术/几何级数的大集合

IF 0.1 Q4 MATHEMATICS
Alex Burgin, Samuel Goldberg, Tamás Keleti, Connor MacMahon, Xianzhi Wang
{"title":"避免无限算术/几何级数的大集合","authors":"Alex Burgin, Samuel Goldberg, Tamás Keleti, Connor MacMahon, Xianzhi Wang","doi":"10.14321/realanalexch.48.2.1668676378","DOIUrl":null,"url":null,"abstract":"We study some variants of the Erdös similarity problem. We pose the question if every measurable subset of the real line with positive measure contains a similar copy of an infinite geometric progression. We construct a compact subset $E$ of the real line such that $0$ is a Lebesgue density point of $E$, but $E$ does not contain any (non-constant) infinite geometric progression. We give a sufficient density type condition that guarantees that a set contains an infinite geometric progression. By slightly improving a recent result of Bradford, Kohut and Mooroo-gen we construct a closed set $F\\subset[0,\\infty)$ such that the measure of $F\\cap[t,t+1]$ tends to $1$ at infinity but $F$ does not contain any infinite arithmetic progression. We also slightly improve a more general recent result by Kolountzakis and Papageorgiou for more general sequences. We give a sufficient condition that guarantees that a given Cantor type set contains at least one infinite geometric progression with any quotient between $0$ and $1$. This can be applied to most symmetric Cantor sets of positive measure.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":"39 1","pages":"0"},"PeriodicalIF":0.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Large Sets Avoiding Infinite Arithmetic / Geometric Progressions\",\"authors\":\"Alex Burgin, Samuel Goldberg, Tamás Keleti, Connor MacMahon, Xianzhi Wang\",\"doi\":\"10.14321/realanalexch.48.2.1668676378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study some variants of the Erdös similarity problem. We pose the question if every measurable subset of the real line with positive measure contains a similar copy of an infinite geometric progression. We construct a compact subset $E$ of the real line such that $0$ is a Lebesgue density point of $E$, but $E$ does not contain any (non-constant) infinite geometric progression. We give a sufficient density type condition that guarantees that a set contains an infinite geometric progression. By slightly improving a recent result of Bradford, Kohut and Mooroo-gen we construct a closed set $F\\\\subset[0,\\\\infty)$ such that the measure of $F\\\\cap[t,t+1]$ tends to $1$ at infinity but $F$ does not contain any infinite arithmetic progression. We also slightly improve a more general recent result by Kolountzakis and Papageorgiou for more general sequences. We give a sufficient condition that guarantees that a given Cantor type set contains at least one infinite geometric progression with any quotient between $0$ and $1$. This can be applied to most symmetric Cantor sets of positive measure.\",\"PeriodicalId\":44674,\"journal\":{\"name\":\"Real Analysis Exchange\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Analysis Exchange\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14321/realanalexch.48.2.1668676378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/realanalexch.48.2.1668676378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

我们研究了Erdös相似问题的一些变体。我们提出了一个问题:是否实线的每一个可测量的正测度子集都包含一个无限几何级数的相似副本。我们构造实线的紧子集$E$,使得$0$是$E$的勒贝格密度点,但$E$不包含任何(非常数)无限几何级数。我们给出了一个充分的密度型条件,保证一个集合包含无穷几何级数。通过稍微改进Bradford, Kohut和Mooroo-gen最近的结果,我们构造了一个闭集$F\subset[0,\infty)$,使得$F\cap[t,t+1]$的度量在无穷远处趋向于$1$,但$F$不包含任何无穷等差数列。我们还稍微改进了Kolountzakis和Papageorgiou最近对更一般序列的更一般的结果。给出了一个充分条件,保证给定的Cantor类型集至少包含一个无穷几何级数,且其商在$0$和$1$之间。这可以应用于大多数正测度的对称康托集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Sets Avoiding Infinite Arithmetic / Geometric Progressions
We study some variants of the Erdös similarity problem. We pose the question if every measurable subset of the real line with positive measure contains a similar copy of an infinite geometric progression. We construct a compact subset $E$ of the real line such that $0$ is a Lebesgue density point of $E$, but $E$ does not contain any (non-constant) infinite geometric progression. We give a sufficient density type condition that guarantees that a set contains an infinite geometric progression. By slightly improving a recent result of Bradford, Kohut and Mooroo-gen we construct a closed set $F\subset[0,\infty)$ such that the measure of $F\cap[t,t+1]$ tends to $1$ at infinity but $F$ does not contain any infinite arithmetic progression. We also slightly improve a more general recent result by Kolountzakis and Papageorgiou for more general sequences. We give a sufficient condition that guarantees that a given Cantor type set contains at least one infinite geometric progression with any quotient between $0$ and $1$. This can be applied to most symmetric Cantor sets of positive measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信