布尔函数代数度的概率估计

Ana Sălăgean, Percy Reyes-Paredes
{"title":"布尔函数代数度的概率估计","authors":"Ana Sălăgean, Percy Reyes-Paredes","doi":"10.1007/s12095-023-00660-4","DOIUrl":null,"url":null,"abstract":"Abstract The algebraic degree is an important parameter of Boolean functions used in cryptography. When a function in a large number of variables is not given explicitly in algebraic normal form, it is usually not feasible to compute its degree, so we need to estimate it. We propose a probabilistic test for deciding whether the algebraic degree of a Boolean function f is below a certain value k . If the degree is indeed below k , then f will always pass the test, otherwise f will fail each instance of the test with a probability $$\\textrm{dt}_k(f)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mtext>dt</mml:mtext> <mml:mi>k</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , which is closely related to the average number of monomials of degree k of the polynomials which are affine equivalent to f . The test has a good accuracy only if this probability $$\\textrm{dt}_k(f)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mtext>dt</mml:mtext> <mml:mi>k</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> of failing the test is not too small. We initiate the study of $$\\textrm{dt}_k(f)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mtext>dt</mml:mtext> <mml:mi>k</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> by showing that in the particular case when the degree of f is actually equal to k , the probability will be in the interval (0.288788, 0.5], and therefore a small number of runs of the test will be sufficient to give, with very high probability, the correct answer. Exact values of $$\\textrm{dt}_k(f)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mtext>dt</mml:mtext> <mml:mi>k</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> for all the polynomials in 8 variables were computed using the representatives listed by Hou and by Langevin and Leander.","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic estimation of the algebraic degree of Boolean functions\",\"authors\":\"Ana Sălăgean, Percy Reyes-Paredes\",\"doi\":\"10.1007/s12095-023-00660-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The algebraic degree is an important parameter of Boolean functions used in cryptography. When a function in a large number of variables is not given explicitly in algebraic normal form, it is usually not feasible to compute its degree, so we need to estimate it. We propose a probabilistic test for deciding whether the algebraic degree of a Boolean function f is below a certain value k . If the degree is indeed below k , then f will always pass the test, otherwise f will fail each instance of the test with a probability $$\\\\textrm{dt}_k(f)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mtext>dt</mml:mtext> <mml:mi>k</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , which is closely related to the average number of monomials of degree k of the polynomials which are affine equivalent to f . The test has a good accuracy only if this probability $$\\\\textrm{dt}_k(f)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mtext>dt</mml:mtext> <mml:mi>k</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> of failing the test is not too small. We initiate the study of $$\\\\textrm{dt}_k(f)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mtext>dt</mml:mtext> <mml:mi>k</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> by showing that in the particular case when the degree of f is actually equal to k , the probability will be in the interval (0.288788, 0.5], and therefore a small number of runs of the test will be sufficient to give, with very high probability, the correct answer. Exact values of $$\\\\textrm{dt}_k(f)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mtext>dt</mml:mtext> <mml:mi>k</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> for all the polynomials in 8 variables were computed using the representatives listed by Hou and by Langevin and Leander.\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-023-00660-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-023-00660-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

代数度是密码学中布尔函数的一个重要参数。当含有大量变量的函数没有以代数范式显式给出时,通常无法计算其次数,因此需要对其进行估计。我们提出了一个判别布尔函数f的代数度是否低于某一值k的概率检验。如果阶数确实低于k,则f总能通过测试,否则f每次测试失败的概率为$$\textrm{dt}_k(f)$$ dt k (f),这与f的仿射等价多项式的k阶单项式的平均个数密切相关。只有当测试失败的概率$$\textrm{dt}_k(f)$$ dt k (f)不太小时,测试才具有良好的准确性。我们开始研究$$\textrm{dt}_k(f)$$ dt k (f),通过表明在f的度实际上等于k的特殊情况下,概率将在(0.288788,0.5)区间内,因此少量的测试运行将足以以非常高的概率给出正确答案。使用Hou和Langevin和Leander列出的代表,计算8个变量中所有多项式的精确值$$\textrm{dt}_k(f)$$ dt k (f)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Probabilistic estimation of the algebraic degree of Boolean functions

Probabilistic estimation of the algebraic degree of Boolean functions
Abstract The algebraic degree is an important parameter of Boolean functions used in cryptography. When a function in a large number of variables is not given explicitly in algebraic normal form, it is usually not feasible to compute its degree, so we need to estimate it. We propose a probabilistic test for deciding whether the algebraic degree of a Boolean function f is below a certain value k . If the degree is indeed below k , then f will always pass the test, otherwise f will fail each instance of the test with a probability $$\textrm{dt}_k(f)$$ dt k ( f ) , which is closely related to the average number of monomials of degree k of the polynomials which are affine equivalent to f . The test has a good accuracy only if this probability $$\textrm{dt}_k(f)$$ dt k ( f ) of failing the test is not too small. We initiate the study of $$\textrm{dt}_k(f)$$ dt k ( f ) by showing that in the particular case when the degree of f is actually equal to k , the probability will be in the interval (0.288788, 0.5], and therefore a small number of runs of the test will be sufficient to give, with very high probability, the correct answer. Exact values of $$\textrm{dt}_k(f)$$ dt k ( f ) for all the polynomials in 8 variables were computed using the representatives listed by Hou and by Langevin and Leander.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信