{"title":"具有动态边界条件的抛物型问题的二阶体面分裂","authors":"Robert Altmann, Christoph Zimmer","doi":"10.1093/imanum/drad062","DOIUrl":null,"url":null,"abstract":"Abstract This paper introduces a novel approach for the construction of bulk–surface splitting schemes for semilinear parabolic partial differential equations with dynamic boundary conditions. The proposed construction is based on a reformulation of the system as a partial differential–algebraic equation and the inclusion of certain delay terms for the decoupling. To obtain a fully discrete scheme, the splitting approach is combined with finite elements in space and a backward differentiation formula in time. Within this paper, we focus on the second-order case, resulting in a $3$-step scheme. We prove second-order convergence under the assumption of a weak CFL-type condition and confirm the theoretical findings by numerical experiments. Moreover, we illustrate the potential for higher-order splitting schemes numerically.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A second-order bulk–surface splitting for parabolic problems with dynamic boundary conditions\",\"authors\":\"Robert Altmann, Christoph Zimmer\",\"doi\":\"10.1093/imanum/drad062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper introduces a novel approach for the construction of bulk–surface splitting schemes for semilinear parabolic partial differential equations with dynamic boundary conditions. The proposed construction is based on a reformulation of the system as a partial differential–algebraic equation and the inclusion of certain delay terms for the decoupling. To obtain a fully discrete scheme, the splitting approach is combined with finite elements in space and a backward differentiation formula in time. Within this paper, we focus on the second-order case, resulting in a $3$-step scheme. We prove second-order convergence under the assumption of a weak CFL-type condition and confirm the theoretical findings by numerical experiments. Moreover, we illustrate the potential for higher-order splitting schemes numerically.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drad062\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imanum/drad062","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A second-order bulk–surface splitting for parabolic problems with dynamic boundary conditions
Abstract This paper introduces a novel approach for the construction of bulk–surface splitting schemes for semilinear parabolic partial differential equations with dynamic boundary conditions. The proposed construction is based on a reformulation of the system as a partial differential–algebraic equation and the inclusion of certain delay terms for the decoupling. To obtain a fully discrete scheme, the splitting approach is combined with finite elements in space and a backward differentiation formula in time. Within this paper, we focus on the second-order case, resulting in a $3$-step scheme. We prove second-order convergence under the assumption of a weak CFL-type condition and confirm the theoretical findings by numerical experiments. Moreover, we illustrate the potential for higher-order splitting schemes numerically.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.