Christian Müller, Jochen Gönsch, Matthias Soppert, Claudius Steinhardt
{"title":"基于空闲时间数据的共享出行系统动态定价","authors":"Christian Müller, Jochen Gönsch, Matthias Soppert, Claudius Steinhardt","doi":"10.1007/s00291-023-00732-0","DOIUrl":null,"url":null,"abstract":"Abstract In most major cities today, various shared mobility systems such as car or bike sharing exist. Maintaining these systems is challenging, and, thus, public and private providers strive to improve operational performance. An important metric which is regularly recorded and monitored in practice for this purpose is idle time, i.e., the time a vehicle stands unused between two rentals. Usually, it is available for different temporal and spatial granularities. At the same time, dynamic pricing has been shown to be an efficient means for increasing operational performance in shared mobility systems, but data necessary for traditional dynamic pricing approaches, like unconstrained demand, is much less available in practice. Thus, dynamic pricing based on idle time data appears promising and first ideas have been proposed. However, the existing approaches are based either on simple business rules or on myopic optimization. In this work, we develop a novel dynamic pricing approach that determines prices by online optimization and thereby anticipates future profits through the integration of idle time data. The core idea is quantifying the remaining profitable time by using idle times. With regard to application in practice, the developed approach is generic in the sense that different types of readily available historical idle time data can be seamlessly integrated, meaning data of different spatio-temporal granularities. In an extensive numerical study, we demonstrate that the operational performance increases with higher granularity and that the approach with the highest one outperforms current pricing practice by up to 11% in terms of profit.","PeriodicalId":54668,"journal":{"name":"or Spectrum","volume":"15 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic pricing for shared mobility systems based on idle time data\",\"authors\":\"Christian Müller, Jochen Gönsch, Matthias Soppert, Claudius Steinhardt\",\"doi\":\"10.1007/s00291-023-00732-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In most major cities today, various shared mobility systems such as car or bike sharing exist. Maintaining these systems is challenging, and, thus, public and private providers strive to improve operational performance. An important metric which is regularly recorded and monitored in practice for this purpose is idle time, i.e., the time a vehicle stands unused between two rentals. Usually, it is available for different temporal and spatial granularities. At the same time, dynamic pricing has been shown to be an efficient means for increasing operational performance in shared mobility systems, but data necessary for traditional dynamic pricing approaches, like unconstrained demand, is much less available in practice. Thus, dynamic pricing based on idle time data appears promising and first ideas have been proposed. However, the existing approaches are based either on simple business rules or on myopic optimization. In this work, we develop a novel dynamic pricing approach that determines prices by online optimization and thereby anticipates future profits through the integration of idle time data. The core idea is quantifying the remaining profitable time by using idle times. With regard to application in practice, the developed approach is generic in the sense that different types of readily available historical idle time data can be seamlessly integrated, meaning data of different spatio-temporal granularities. In an extensive numerical study, we demonstrate that the operational performance increases with higher granularity and that the approach with the highest one outperforms current pricing practice by up to 11% in terms of profit.\",\"PeriodicalId\":54668,\"journal\":{\"name\":\"or Spectrum\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"or Spectrum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00291-023-00732-0\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"or Spectrum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00291-023-00732-0","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Dynamic pricing for shared mobility systems based on idle time data
Abstract In most major cities today, various shared mobility systems such as car or bike sharing exist. Maintaining these systems is challenging, and, thus, public and private providers strive to improve operational performance. An important metric which is regularly recorded and monitored in practice for this purpose is idle time, i.e., the time a vehicle stands unused between two rentals. Usually, it is available for different temporal and spatial granularities. At the same time, dynamic pricing has been shown to be an efficient means for increasing operational performance in shared mobility systems, but data necessary for traditional dynamic pricing approaches, like unconstrained demand, is much less available in practice. Thus, dynamic pricing based on idle time data appears promising and first ideas have been proposed. However, the existing approaches are based either on simple business rules or on myopic optimization. In this work, we develop a novel dynamic pricing approach that determines prices by online optimization and thereby anticipates future profits through the integration of idle time data. The core idea is quantifying the remaining profitable time by using idle times. With regard to application in practice, the developed approach is generic in the sense that different types of readily available historical idle time data can be seamlessly integrated, meaning data of different spatio-temporal granularities. In an extensive numerical study, we demonstrate that the operational performance increases with higher granularity and that the approach with the highest one outperforms current pricing practice by up to 11% in terms of profit.
期刊介绍:
OR Spectrum publishes applied and theoretical papers which contribute to Operations Research as a scientific instrument for the development and application of quantitative approaches for problem-solving and decision-making in management. It addresses all persons from university, industry, business and administration interested in innovative applications of quantitative methods as well as in advances in theory and techniques with relevance to practice.
The journal provides an international forum for academics and practitioners from areas such as quantitative management science, mathematical operations research, and related fields of engineering and information systems. It publishes high-quality, original papers belonging to the following types of contributions: Surveys, theoretical papers, application-oriented papers, and case studies. Papers must be written in English. All contributions are reviewed by at least two referees.