Jordan Bos, Nick Tranter, Ben Turner, Guy Drijkoningen
{"title":"陆上地震采集零碳排放现场作业","authors":"Jordan Bos, Nick Tranter, Ben Turner, Guy Drijkoningen","doi":"10.3997/1365-2397.fb2023082","DOIUrl":null,"url":null,"abstract":"Reducing carbon emissions and minimising land disturbances are key motivators to use innovations for onshore seismic acquisition. Seismic Mechatronics B V, through its fully battery-powered electric seismic source, has now enabled zero carbon-emission from vibrators and project vehicles during seismic acquisition with minimal disturbance on land. It recently proved this in a seismic survey in a noise-limited zone at the border of the Netherlands and Belgium. Being able to minimise environmental impact and to acquire higher-quality results in an environment with a challenging sub-surface made this project a success. This article compares the results achieved by one Storm10 eVibe in combination with STRYDE autonomous nodes, operated with zero carbon-emissions, to results obtained in mid-2022 using three conventional Mertz M12 diesel powered Vibroseis trucks in combination with Sercel WiNG nodes. We demonstrate that even with challenging operational conditions, the results achieved with the eVibe are superior for both the near-surface and deeper subsurface.","PeriodicalId":35692,"journal":{"name":"First Break","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero Carbon-Emission Field Operations for Onshore Seismic Acquisition\",\"authors\":\"Jordan Bos, Nick Tranter, Ben Turner, Guy Drijkoningen\",\"doi\":\"10.3997/1365-2397.fb2023082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing carbon emissions and minimising land disturbances are key motivators to use innovations for onshore seismic acquisition. Seismic Mechatronics B V, through its fully battery-powered electric seismic source, has now enabled zero carbon-emission from vibrators and project vehicles during seismic acquisition with minimal disturbance on land. It recently proved this in a seismic survey in a noise-limited zone at the border of the Netherlands and Belgium. Being able to minimise environmental impact and to acquire higher-quality results in an environment with a challenging sub-surface made this project a success. This article compares the results achieved by one Storm10 eVibe in combination with STRYDE autonomous nodes, operated with zero carbon-emissions, to results obtained in mid-2022 using three conventional Mertz M12 diesel powered Vibroseis trucks in combination with Sercel WiNG nodes. We demonstrate that even with challenging operational conditions, the results achieved with the eVibe are superior for both the near-surface and deeper subsurface.\",\"PeriodicalId\":35692,\"journal\":{\"name\":\"First Break\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First Break\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/1365-2397.fb2023082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First Break","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/1365-2397.fb2023082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
摘要
减少碳排放和减少土地干扰是陆地地震采集技术创新的主要动力。Seismic Mechatronics B V公司通过其全电池供电的电震源,在地震采集过程中实现了振动器和项目车辆的零碳排放,对陆地的干扰最小。最近,在荷兰和比利时边境的一个噪音限制区进行的地震调查证明了这一点。由于能够最大限度地减少对环境的影响,并在具有挑战性的地下环境中获得更高质量的结果,该项目取得了成功。本文将一辆Storm10 eVibe与STRYDE自动节点(零碳排放)相结合的结果与2022年年中使用三辆传统Mertz M12柴油动力振动震源卡车与Sercel WiNG节点相结合的结果进行了比较。我们证明,即使在具有挑战性的作业条件下,eVibe在近地表和更深的地下都取得了卓越的效果。
Zero Carbon-Emission Field Operations for Onshore Seismic Acquisition
Reducing carbon emissions and minimising land disturbances are key motivators to use innovations for onshore seismic acquisition. Seismic Mechatronics B V, through its fully battery-powered electric seismic source, has now enabled zero carbon-emission from vibrators and project vehicles during seismic acquisition with minimal disturbance on land. It recently proved this in a seismic survey in a noise-limited zone at the border of the Netherlands and Belgium. Being able to minimise environmental impact and to acquire higher-quality results in an environment with a challenging sub-surface made this project a success. This article compares the results achieved by one Storm10 eVibe in combination with STRYDE autonomous nodes, operated with zero carbon-emissions, to results obtained in mid-2022 using three conventional Mertz M12 diesel powered Vibroseis trucks in combination with Sercel WiNG nodes. We demonstrate that even with challenging operational conditions, the results achieved with the eVibe are superior for both the near-surface and deeper subsurface.