花岗岩抗压和抗拉强度的速率依赖性

Q2 Earth and Planetary Sciences
Jackie E. Kendrick, Anthony Lamur, Julien Mouli-Castillo, Andrew P. Fraser-Harris, Alexander Lightbody, Katriona Edlmann, Christopher McDermott, Zoe Shipton
{"title":"花岗岩抗压和抗拉强度的速率依赖性","authors":"Jackie E. Kendrick, Anthony Lamur, Julien Mouli-Castillo, Andrew P. Fraser-Harris, Alexander Lightbody, Katriona Edlmann, Christopher McDermott, Zoe Shipton","doi":"10.5194/adgeo-62-11-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The strength and rupture of geomaterials are integral to subsurface engineering practices, such as those required to optimise geothermal energy extraction. Of particular importance is the time- and strain-rate-dependence of material strength, which dictates the energy released upon failure, and impacts the magnitude of induced seismicity, fracture architecture and thus hydraulic conductivity and system permeability. Here, we performed a series of uniaxial compression and Brazilian tensile strength measurements at a range of deformation rates in order to constrain the impact of strain rate on the strength of G603 granite. The dense, low permeability, medium-grained granites were mechanically tested at 4 strain rates (or diametric equivalent strain rates in the case of Brazilian tests) from 10−5 to 10−2 s−1, such that sample failure was achieved in anything from below 1s at the fastest rate in tension, to over 1000s at the slowest rate in compression. The applied rates encompassed those recommended by ISRM and ASTM material testing standards for compressive and Brazilian tensile testing. We found a significant rate strengthening effect, whereby compressive and tensile strength both increased by approximately 35 % across the 4 orders of magnitude of strain rate tested. We found that the static Young's modulus remained relatively constant across this range of deformation rates, however variability was reduced at faster rates, owing to the reduced time for equilibration of the system to imposed stresses. The lower strength at slower strain rates causes smaller stress drops, indicating that rocks driven to compressive and tensile failure at slower rates release less energy upon failure. Such constraints of the strain-rate-dependence of material strength, in contrast to the use of standardised material characteristics conventionally used in Engineering Geology applications, will prove useful as we develop increasingly sophisticated strategies such as cyclic soft stimulation to access resources using less energy, whilst reducing environmental risk and producing less waste.","PeriodicalId":7329,"journal":{"name":"Advances in Geosciences","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rate-dependence of the compressive and tensile strength of granites\",\"authors\":\"Jackie E. Kendrick, Anthony Lamur, Julien Mouli-Castillo, Andrew P. Fraser-Harris, Alexander Lightbody, Katriona Edlmann, Christopher McDermott, Zoe Shipton\",\"doi\":\"10.5194/adgeo-62-11-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The strength and rupture of geomaterials are integral to subsurface engineering practices, such as those required to optimise geothermal energy extraction. Of particular importance is the time- and strain-rate-dependence of material strength, which dictates the energy released upon failure, and impacts the magnitude of induced seismicity, fracture architecture and thus hydraulic conductivity and system permeability. Here, we performed a series of uniaxial compression and Brazilian tensile strength measurements at a range of deformation rates in order to constrain the impact of strain rate on the strength of G603 granite. The dense, low permeability, medium-grained granites were mechanically tested at 4 strain rates (or diametric equivalent strain rates in the case of Brazilian tests) from 10−5 to 10−2 s−1, such that sample failure was achieved in anything from below 1s at the fastest rate in tension, to over 1000s at the slowest rate in compression. The applied rates encompassed those recommended by ISRM and ASTM material testing standards for compressive and Brazilian tensile testing. We found a significant rate strengthening effect, whereby compressive and tensile strength both increased by approximately 35 % across the 4 orders of magnitude of strain rate tested. We found that the static Young's modulus remained relatively constant across this range of deformation rates, however variability was reduced at faster rates, owing to the reduced time for equilibration of the system to imposed stresses. The lower strength at slower strain rates causes smaller stress drops, indicating that rocks driven to compressive and tensile failure at slower rates release less energy upon failure. Such constraints of the strain-rate-dependence of material strength, in contrast to the use of standardised material characteristics conventionally used in Engineering Geology applications, will prove useful as we develop increasingly sophisticated strategies such as cyclic soft stimulation to access resources using less energy, whilst reducing environmental risk and producing less waste.\",\"PeriodicalId\":7329,\"journal\":{\"name\":\"Advances in Geosciences\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/adgeo-62-11-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/adgeo-62-11-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要地质材料的强度和断裂是地下工程实践不可或缺的一部分,例如优化地热能提取所需的工程实践。特别重要的是材料强度的时间和应变率依赖性,这决定了破坏时释放的能量,并影响诱发地震活动性的大小、裂缝结构,从而影响水力导电性和系统渗透率。为了约束应变速率对G603花岗岩强度的影响,我们在一定变形速率下进行了一系列单轴压缩和巴西拉伸强度测量。在4种应变速率下(或在巴西试验中为直径等效应变速率),从10−5到10−2 s−1,对致密、低渗透性、中粒花岗岩进行了机械测试,这样,试样在任何情况下都可以实现破坏,从最快的拉伸速率低于1s到最慢的压缩速率超过1000s。适用的速率包括ISRM和ASTM材料测试标准推荐的压缩和巴西拉伸测试速率。我们发现了显著的速率强化效应,即在应变速率测试的4个数量级中,抗压和抗拉强度都增加了约35%。我们发现,静态杨氏模量在这一变形速率范围内保持相对恒定,然而,由于系统对施加应力的平衡时间减少,变异性在更快的速率下减少。较慢应变速率下较低的强度导致较小的应力降,这表明岩石在较慢应变速率下发生压缩和拉伸破坏时释放的能量较少。与工程地质应用中常规使用的标准化材料特性相比,这种材料强度的应变率依赖性约束将被证明是有用的,因为我们开发了越来越复杂的策略,如循环软刺激,以更少的能源获取资源,同时降低了环境风险,产生了更少的废物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rate-dependence of the compressive and tensile strength of granites
Abstract. The strength and rupture of geomaterials are integral to subsurface engineering practices, such as those required to optimise geothermal energy extraction. Of particular importance is the time- and strain-rate-dependence of material strength, which dictates the energy released upon failure, and impacts the magnitude of induced seismicity, fracture architecture and thus hydraulic conductivity and system permeability. Here, we performed a series of uniaxial compression and Brazilian tensile strength measurements at a range of deformation rates in order to constrain the impact of strain rate on the strength of G603 granite. The dense, low permeability, medium-grained granites were mechanically tested at 4 strain rates (or diametric equivalent strain rates in the case of Brazilian tests) from 10−5 to 10−2 s−1, such that sample failure was achieved in anything from below 1s at the fastest rate in tension, to over 1000s at the slowest rate in compression. The applied rates encompassed those recommended by ISRM and ASTM material testing standards for compressive and Brazilian tensile testing. We found a significant rate strengthening effect, whereby compressive and tensile strength both increased by approximately 35 % across the 4 orders of magnitude of strain rate tested. We found that the static Young's modulus remained relatively constant across this range of deformation rates, however variability was reduced at faster rates, owing to the reduced time for equilibration of the system to imposed stresses. The lower strength at slower strain rates causes smaller stress drops, indicating that rocks driven to compressive and tensile failure at slower rates release less energy upon failure. Such constraints of the strain-rate-dependence of material strength, in contrast to the use of standardised material characteristics conventionally used in Engineering Geology applications, will prove useful as we develop increasingly sophisticated strategies such as cyclic soft stimulation to access resources using less energy, whilst reducing environmental risk and producing less waste.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geosciences
Advances in Geosciences Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
3.70
自引率
0.00%
发文量
16
审稿时长
30 weeks
期刊介绍: Advances in Geosciences (ADGEO) is an international, interdisciplinary journal for fast publication of collections of short, but self-contained communications in the Earth, planetary and solar system sciences, published in separate volumes online with the option of a publication on paper (print-on-demand). The collections may include papers presented at scientific meetings (proceedings) or articles on a well defined topic compiled by individual editors or organizations (special publications). The evaluation of the manuscript is organized by Guest-Editors, i.e. either by the conveners of a session of a conference or by the organizers of a meeting or workshop or by editors appointed otherwise, and their chosen referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信