Jackie E. Kendrick, Anthony Lamur, Julien Mouli-Castillo, Andrew P. Fraser-Harris, Alexander Lightbody, Katriona Edlmann, Christopher McDermott, Zoe Shipton
{"title":"花岗岩抗压和抗拉强度的速率依赖性","authors":"Jackie E. Kendrick, Anthony Lamur, Julien Mouli-Castillo, Andrew P. Fraser-Harris, Alexander Lightbody, Katriona Edlmann, Christopher McDermott, Zoe Shipton","doi":"10.5194/adgeo-62-11-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The strength and rupture of geomaterials are integral to subsurface engineering practices, such as those required to optimise geothermal energy extraction. Of particular importance is the time- and strain-rate-dependence of material strength, which dictates the energy released upon failure, and impacts the magnitude of induced seismicity, fracture architecture and thus hydraulic conductivity and system permeability. Here, we performed a series of uniaxial compression and Brazilian tensile strength measurements at a range of deformation rates in order to constrain the impact of strain rate on the strength of G603 granite. The dense, low permeability, medium-grained granites were mechanically tested at 4 strain rates (or diametric equivalent strain rates in the case of Brazilian tests) from 10−5 to 10−2 s−1, such that sample failure was achieved in anything from below 1s at the fastest rate in tension, to over 1000s at the slowest rate in compression. The applied rates encompassed those recommended by ISRM and ASTM material testing standards for compressive and Brazilian tensile testing. We found a significant rate strengthening effect, whereby compressive and tensile strength both increased by approximately 35 % across the 4 orders of magnitude of strain rate tested. We found that the static Young's modulus remained relatively constant across this range of deformation rates, however variability was reduced at faster rates, owing to the reduced time for equilibration of the system to imposed stresses. The lower strength at slower strain rates causes smaller stress drops, indicating that rocks driven to compressive and tensile failure at slower rates release less energy upon failure. Such constraints of the strain-rate-dependence of material strength, in contrast to the use of standardised material characteristics conventionally used in Engineering Geology applications, will prove useful as we develop increasingly sophisticated strategies such as cyclic soft stimulation to access resources using less energy, whilst reducing environmental risk and producing less waste.","PeriodicalId":7329,"journal":{"name":"Advances in Geosciences","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rate-dependence of the compressive and tensile strength of granites\",\"authors\":\"Jackie E. Kendrick, Anthony Lamur, Julien Mouli-Castillo, Andrew P. Fraser-Harris, Alexander Lightbody, Katriona Edlmann, Christopher McDermott, Zoe Shipton\",\"doi\":\"10.5194/adgeo-62-11-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The strength and rupture of geomaterials are integral to subsurface engineering practices, such as those required to optimise geothermal energy extraction. Of particular importance is the time- and strain-rate-dependence of material strength, which dictates the energy released upon failure, and impacts the magnitude of induced seismicity, fracture architecture and thus hydraulic conductivity and system permeability. Here, we performed a series of uniaxial compression and Brazilian tensile strength measurements at a range of deformation rates in order to constrain the impact of strain rate on the strength of G603 granite. The dense, low permeability, medium-grained granites were mechanically tested at 4 strain rates (or diametric equivalent strain rates in the case of Brazilian tests) from 10−5 to 10−2 s−1, such that sample failure was achieved in anything from below 1s at the fastest rate in tension, to over 1000s at the slowest rate in compression. The applied rates encompassed those recommended by ISRM and ASTM material testing standards for compressive and Brazilian tensile testing. We found a significant rate strengthening effect, whereby compressive and tensile strength both increased by approximately 35 % across the 4 orders of magnitude of strain rate tested. We found that the static Young's modulus remained relatively constant across this range of deformation rates, however variability was reduced at faster rates, owing to the reduced time for equilibration of the system to imposed stresses. The lower strength at slower strain rates causes smaller stress drops, indicating that rocks driven to compressive and tensile failure at slower rates release less energy upon failure. Such constraints of the strain-rate-dependence of material strength, in contrast to the use of standardised material characteristics conventionally used in Engineering Geology applications, will prove useful as we develop increasingly sophisticated strategies such as cyclic soft stimulation to access resources using less energy, whilst reducing environmental risk and producing less waste.\",\"PeriodicalId\":7329,\"journal\":{\"name\":\"Advances in Geosciences\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/adgeo-62-11-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/adgeo-62-11-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Rate-dependence of the compressive and tensile strength of granites
Abstract. The strength and rupture of geomaterials are integral to subsurface engineering practices, such as those required to optimise geothermal energy extraction. Of particular importance is the time- and strain-rate-dependence of material strength, which dictates the energy released upon failure, and impacts the magnitude of induced seismicity, fracture architecture and thus hydraulic conductivity and system permeability. Here, we performed a series of uniaxial compression and Brazilian tensile strength measurements at a range of deformation rates in order to constrain the impact of strain rate on the strength of G603 granite. The dense, low permeability, medium-grained granites were mechanically tested at 4 strain rates (or diametric equivalent strain rates in the case of Brazilian tests) from 10−5 to 10−2 s−1, such that sample failure was achieved in anything from below 1s at the fastest rate in tension, to over 1000s at the slowest rate in compression. The applied rates encompassed those recommended by ISRM and ASTM material testing standards for compressive and Brazilian tensile testing. We found a significant rate strengthening effect, whereby compressive and tensile strength both increased by approximately 35 % across the 4 orders of magnitude of strain rate tested. We found that the static Young's modulus remained relatively constant across this range of deformation rates, however variability was reduced at faster rates, owing to the reduced time for equilibration of the system to imposed stresses. The lower strength at slower strain rates causes smaller stress drops, indicating that rocks driven to compressive and tensile failure at slower rates release less energy upon failure. Such constraints of the strain-rate-dependence of material strength, in contrast to the use of standardised material characteristics conventionally used in Engineering Geology applications, will prove useful as we develop increasingly sophisticated strategies such as cyclic soft stimulation to access resources using less energy, whilst reducing environmental risk and producing less waste.
Advances in GeosciencesEarth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
3.70
自引率
0.00%
发文量
16
审稿时长
30 weeks
期刊介绍:
Advances in Geosciences (ADGEO) is an international, interdisciplinary journal for fast publication of collections of short, but self-contained communications in the Earth, planetary and solar system sciences, published in separate volumes online with the option of a publication on paper (print-on-demand). The collections may include papers presented at scientific meetings (proceedings) or articles on a well defined topic compiled by individual editors or organizations (special publications). The evaluation of the manuscript is organized by Guest-Editors, i.e. either by the conveners of a session of a conference or by the organizers of a meeting or workshop or by editors appointed otherwise, and their chosen referees.