黎曼ζ函数的螺旋——曲率、密度和普适性

IF 0.6 3区 数学 Q3 MATHEMATICS
ATHANASIOS SOURMELIDIS, JÖRN STEUDING
{"title":"黎曼ζ函数的螺旋——曲率、密度和普适性","authors":"ATHANASIOS SOURMELIDIS, JÖRN STEUDING","doi":"10.1017/s0305004123000543","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with applications of Voronin’s universality theorem for the Riemann zeta-function $\\zeta$ . Among other results we prove that every plane smooth curve appears up to a small error in the curve generated by the values $\\zeta(\\sigma+it)$ for real t where $\\sigma\\in(1/2,1)$ is fixed. In this sense, the values of the zeta-function on any such vertical line provides an atlas for plane curves. In the same framework, we study the curvature of curves generated from $\\zeta(\\sigma+it)$ when $\\sigma>1/2$ and we show that there is a connection with the zeros of $\\zeta'(\\sigma+it)$ . Moreover, we clarify under which conditions the real and the imaginary part of the zeta-function are jointly universal.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"33 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spirals of Riemann’s Zeta-Function — Curvature, Denseness and Universality\",\"authors\":\"ATHANASIOS SOURMELIDIS, JÖRN STEUDING\",\"doi\":\"10.1017/s0305004123000543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper deals with applications of Voronin’s universality theorem for the Riemann zeta-function $\\\\zeta$ . Among other results we prove that every plane smooth curve appears up to a small error in the curve generated by the values $\\\\zeta(\\\\sigma+it)$ for real t where $\\\\sigma\\\\in(1/2,1)$ is fixed. In this sense, the values of the zeta-function on any such vertical line provides an atlas for plane curves. In the same framework, we study the curvature of curves generated from $\\\\zeta(\\\\sigma+it)$ when $\\\\sigma>1/2$ and we show that there is a connection with the zeros of $\\\\zeta'(\\\\sigma+it)$ . Moreover, we clarify under which conditions the real and the imaginary part of the zeta-function are jointly universal.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0305004123000543\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0305004123000543","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了Voronin通用性定理在黎曼ζ函数$\zeta$中的应用。在其他结果中,我们证明了每个平面平滑曲线在由实t的值$\zeta(\sigma+it)$生成的曲线中出现一个小误差,其中$\sigma\in(1/2,1)$是固定的。从这个意义上说,在任何这样的垂直线上的ζ函数的值提供了平面曲线的图集。在相同的框架下,我们研究了$\sigma>1/2$时由$\zeta(\sigma+it)$生成的曲线的曲率,并证明了与$\zeta'(\sigma+it)$的零点存在联系。此外,我们还澄清了在什么条件下函数的实部和虚部是联合泛的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spirals of Riemann’s Zeta-Function — Curvature, Denseness and Universality
Abstract This paper deals with applications of Voronin’s universality theorem for the Riemann zeta-function $\zeta$ . Among other results we prove that every plane smooth curve appears up to a small error in the curve generated by the values $\zeta(\sigma+it)$ for real t where $\sigma\in(1/2,1)$ is fixed. In this sense, the values of the zeta-function on any such vertical line provides an atlas for plane curves. In the same framework, we study the curvature of curves generated from $\zeta(\sigma+it)$ when $\sigma>1/2$ and we show that there is a connection with the zeros of $\zeta'(\sigma+it)$ . Moreover, we clarify under which conditions the real and the imaginary part of the zeta-function are jointly universal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信