基于fpga的电力电子电路硬件在环(HIL)仿真及器件级行为建模

Q2 Engineering
Designs Pub Date : 2023-10-05 DOI:10.3390/designs7050115
Mohamed Baghdadi, Elmostafa Elwarraki, Imane Ait Ayad
{"title":"基于fpga的电力电子电路硬件在环(HIL)仿真及器件级行为建模","authors":"Mohamed Baghdadi, Elmostafa Elwarraki, Imane Ait Ayad","doi":"10.3390/designs7050115","DOIUrl":null,"url":null,"abstract":"Accurate models of power electronic converters can greatly enhance the accuracy of hardware-in-the-loop (HIL) simulators. This can result in faster and more cost-effective design cycles in industrial applications. This paper presents a detailed hardware model of the IGBT and power diode at the device level suggested for emulating power electronic converters on a field programmable gate array (FPGA). The static visualization of the IGBT component involves an arrangement of equivalent models for both the MOSFET and bipolar transistor in a cascading configuration. The dynamic aspect is represented by inter-electrode nonlinear capacitances. In an effort to expedite the development process while still producing reliable results, the algorithm for the simulation system was built utilizing FPGA-based rapid prototyping via the HDL Coder in MATLAB software (R2019b). Essentially, the HDL Coder transforms the Simulink blocks of these devices within MATLAB into a hardware description language (HDL) suitable for implementation on an FPGA. To evaluate the suggested IGBT hardware model and the nonlinear circuit simulation technique, a chopper circuit is replicated, and an FPGA-in-the-loop simulation is carried out to compare the efficacy and accuracy of the model with both offline simulation results and real-time simulation results using MATLAB Simulink software and the Altera FPGA Cyclone IV GX development board.","PeriodicalId":53150,"journal":{"name":"Designs","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPGA-Based Hardware-in-the-Loop (HIL) Emulation of Power Electronics Circuit Using Device-Level Behavioral Modeling\",\"authors\":\"Mohamed Baghdadi, Elmostafa Elwarraki, Imane Ait Ayad\",\"doi\":\"10.3390/designs7050115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate models of power electronic converters can greatly enhance the accuracy of hardware-in-the-loop (HIL) simulators. This can result in faster and more cost-effective design cycles in industrial applications. This paper presents a detailed hardware model of the IGBT and power diode at the device level suggested for emulating power electronic converters on a field programmable gate array (FPGA). The static visualization of the IGBT component involves an arrangement of equivalent models for both the MOSFET and bipolar transistor in a cascading configuration. The dynamic aspect is represented by inter-electrode nonlinear capacitances. In an effort to expedite the development process while still producing reliable results, the algorithm for the simulation system was built utilizing FPGA-based rapid prototyping via the HDL Coder in MATLAB software (R2019b). Essentially, the HDL Coder transforms the Simulink blocks of these devices within MATLAB into a hardware description language (HDL) suitable for implementation on an FPGA. To evaluate the suggested IGBT hardware model and the nonlinear circuit simulation technique, a chopper circuit is replicated, and an FPGA-in-the-loop simulation is carried out to compare the efficacy and accuracy of the model with both offline simulation results and real-time simulation results using MATLAB Simulink software and the Altera FPGA Cyclone IV GX development board.\",\"PeriodicalId\":53150,\"journal\":{\"name\":\"Designs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/designs7050115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/designs7050115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

准确的电力电子变换器模型可以大大提高半实物仿真器的精度。这可以在工业应用中实现更快、更经济的设计周期。本文提出了在现场可编程门阵列(FPGA)上模拟电力电子变换器的器件级IGBT和功率二极管的详细硬件模型。IGBT元件的静态可视化包括在级联配置中对MOSFET和双极晶体管的等效模型进行排列。动态方面用电极间非线性电容表示。为了加快开发过程,同时仍然产生可靠的结果,仿真系统的算法是利用基于fpga的快速原型设计,通过MATLAB软件中的HDL编码器(R2019b)构建的。从本质上讲,HDL编码器将这些设备的Simulink块在MATLAB中转换为适合在FPGA上实现的硬件描述语言(HDL)。为了评估所提出的IGBT硬件模型和非线性电路仿真技术,复制了一个斩波电路,并利用MATLAB Simulink软件和Altera FPGA Cyclone IV GX开发板进行了FPGA在环仿真,比较了模型的有效性和准确性,以及离线仿真结果和实时仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA-Based Hardware-in-the-Loop (HIL) Emulation of Power Electronics Circuit Using Device-Level Behavioral Modeling
Accurate models of power electronic converters can greatly enhance the accuracy of hardware-in-the-loop (HIL) simulators. This can result in faster and more cost-effective design cycles in industrial applications. This paper presents a detailed hardware model of the IGBT and power diode at the device level suggested for emulating power electronic converters on a field programmable gate array (FPGA). The static visualization of the IGBT component involves an arrangement of equivalent models for both the MOSFET and bipolar transistor in a cascading configuration. The dynamic aspect is represented by inter-electrode nonlinear capacitances. In an effort to expedite the development process while still producing reliable results, the algorithm for the simulation system was built utilizing FPGA-based rapid prototyping via the HDL Coder in MATLAB software (R2019b). Essentially, the HDL Coder transforms the Simulink blocks of these devices within MATLAB into a hardware description language (HDL) suitable for implementation on an FPGA. To evaluate the suggested IGBT hardware model and the nonlinear circuit simulation technique, a chopper circuit is replicated, and an FPGA-in-the-loop simulation is carried out to compare the efficacy and accuracy of the model with both offline simulation results and real-time simulation results using MATLAB Simulink software and the Altera FPGA Cyclone IV GX development board.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designs
Designs Engineering-Engineering (miscellaneous)
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信