Dominik Pandurevic, Alexander Sutor, Klaus Hochradel
{"title":"竞技速度爬坡预测参数的统计分析","authors":"Dominik Pandurevic, Alexander Sutor, Klaus Hochradel","doi":"10.1007/s12283-023-00431-7","DOIUrl":null,"url":null,"abstract":"Abstract Competitive sport climbing progressed massively within the last quarter century. Development of technology enabling qualitative and quantitative analysis is required to withstand the challenges for athletes and trainers. This paper deals with the statistical study of a data set generated by the application of several image processing algorithms and neural networks on competition recordings. Therefore, calculated parameters are combined with random variables for the implementation of a linear mixed effect model. The resulting model enables the prediction of the end time of different athletes and the determination of its correlation with the input variables. Furthermore, analysis of velocity and path of the centre of gravity in different wall sections is done for all available speed climbing athletes. The observed data set consists of 297 runs in total divided into two subsets of 202 observations of 47 male and 95 of 25 female athletes. Among others, the statistical model was used for the validation of the measured parameters and the review and impact of proven techniques like the Tomoa skip in the start section. Likewise interesting is the high influence of the parameters, measured especially in the middle section of the wall, on the end time.","PeriodicalId":46387,"journal":{"name":"Sports Engineering","volume":"105 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards statistical analysis of predictive parameters in competitive speed climbing\",\"authors\":\"Dominik Pandurevic, Alexander Sutor, Klaus Hochradel\",\"doi\":\"10.1007/s12283-023-00431-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Competitive sport climbing progressed massively within the last quarter century. Development of technology enabling qualitative and quantitative analysis is required to withstand the challenges for athletes and trainers. This paper deals with the statistical study of a data set generated by the application of several image processing algorithms and neural networks on competition recordings. Therefore, calculated parameters are combined with random variables for the implementation of a linear mixed effect model. The resulting model enables the prediction of the end time of different athletes and the determination of its correlation with the input variables. Furthermore, analysis of velocity and path of the centre of gravity in different wall sections is done for all available speed climbing athletes. The observed data set consists of 297 runs in total divided into two subsets of 202 observations of 47 male and 95 of 25 female athletes. Among others, the statistical model was used for the validation of the measured parameters and the review and impact of proven techniques like the Tomoa skip in the start section. Likewise interesting is the high influence of the parameters, measured especially in the middle section of the wall, on the end time.\",\"PeriodicalId\":46387,\"journal\":{\"name\":\"Sports Engineering\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12283-023-00431-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12283-023-00431-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
Towards statistical analysis of predictive parameters in competitive speed climbing
Abstract Competitive sport climbing progressed massively within the last quarter century. Development of technology enabling qualitative and quantitative analysis is required to withstand the challenges for athletes and trainers. This paper deals with the statistical study of a data set generated by the application of several image processing algorithms and neural networks on competition recordings. Therefore, calculated parameters are combined with random variables for the implementation of a linear mixed effect model. The resulting model enables the prediction of the end time of different athletes and the determination of its correlation with the input variables. Furthermore, analysis of velocity and path of the centre of gravity in different wall sections is done for all available speed climbing athletes. The observed data set consists of 297 runs in total divided into two subsets of 202 observations of 47 male and 95 of 25 female athletes. Among others, the statistical model was used for the validation of the measured parameters and the review and impact of proven techniques like the Tomoa skip in the start section. Likewise interesting is the high influence of the parameters, measured especially in the middle section of the wall, on the end time.
期刊介绍:
Sports Engineering is an international journal publishing original papers on the application of engineering and science to sport. The journal intends to fill the niche area which lies between classical engineering and sports science and aims to bridge the gap between the analysis of the equipment and of the athlete. Areas of interest include the mechanics and dynamics of sport, the analysis of movement, instrumentation, equipment design, surface interaction, materials and modelling. These topics may be applied to technology in almost any sport. The journal will be of particular interest to Engineering, Physics, Mathematics and Sports Science Departments and will act as a forum where research, industry and the sports sector can exchange knowledge and innovative ideas.