{"title":"紧凑的双端口MIMO滤波器为基础的DMS具有高隔离的c波段和x波段应用","authors":"Rania H. Elabd","doi":"10.1186/s13638-023-02319-3","DOIUrl":null,"url":null,"abstract":"Abstract A dual-port multiple-input multiple-output (MIMO) filtenna with minimal sizes of 80 × 45 mm 2 is set up in this study. Each element in this MIMO filtenna is positioned orthogonally to the one next to it to improve isolation. For the MIMO element to achieve high-frequency selectivity and compact size, a frequency-reconfigurable filtenna that was created by fusing a band-pass filter and a monopole radiator was used. The suggested filtenna can switch between its C-band and X-band operating states with ease. On build the filtenna circuit, a band-pass filter based on defective microstrip structure is inserted to a circular monopole radiator. The developed filtenna operates in the C-band frequency range of 6.5–8 GHz and the X-band frequency range of 8–12 GHz. It is possible to use the X-band operating state for communication in a cognitive radio environment. Used as a decoupling structure, metamaterial structures can increase isolation to more than 40 dB across the bandwidth. The suggested MIMO filtenna system has an envelope correlation coefficient of 2.4e−6, a peak gain of 6 dBi, and an impedance bandwidth of 7.4–7.75 GHz. The MIMO filtenna is constructed and measured, and the findings of the measurement and simulation are in good agreement.","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":"180 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact dual-port MIMO filtenna-based DMS with high isolation for C-band and X-band applications\",\"authors\":\"Rania H. Elabd\",\"doi\":\"10.1186/s13638-023-02319-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A dual-port multiple-input multiple-output (MIMO) filtenna with minimal sizes of 80 × 45 mm 2 is set up in this study. Each element in this MIMO filtenna is positioned orthogonally to the one next to it to improve isolation. For the MIMO element to achieve high-frequency selectivity and compact size, a frequency-reconfigurable filtenna that was created by fusing a band-pass filter and a monopole radiator was used. The suggested filtenna can switch between its C-band and X-band operating states with ease. On build the filtenna circuit, a band-pass filter based on defective microstrip structure is inserted to a circular monopole radiator. The developed filtenna operates in the C-band frequency range of 6.5–8 GHz and the X-band frequency range of 8–12 GHz. It is possible to use the X-band operating state for communication in a cognitive radio environment. Used as a decoupling structure, metamaterial structures can increase isolation to more than 40 dB across the bandwidth. The suggested MIMO filtenna system has an envelope correlation coefficient of 2.4e−6, a peak gain of 6 dBi, and an impedance bandwidth of 7.4–7.75 GHz. The MIMO filtenna is constructed and measured, and the findings of the measurement and simulation are in good agreement.\",\"PeriodicalId\":12040,\"journal\":{\"name\":\"EURASIP Journal on Wireless Communications and Networking\",\"volume\":\"180 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Wireless Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13638-023-02319-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13638-023-02319-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Compact dual-port MIMO filtenna-based DMS with high isolation for C-band and X-band applications
Abstract A dual-port multiple-input multiple-output (MIMO) filtenna with minimal sizes of 80 × 45 mm 2 is set up in this study. Each element in this MIMO filtenna is positioned orthogonally to the one next to it to improve isolation. For the MIMO element to achieve high-frequency selectivity and compact size, a frequency-reconfigurable filtenna that was created by fusing a band-pass filter and a monopole radiator was used. The suggested filtenna can switch between its C-band and X-band operating states with ease. On build the filtenna circuit, a band-pass filter based on defective microstrip structure is inserted to a circular monopole radiator. The developed filtenna operates in the C-band frequency range of 6.5–8 GHz and the X-band frequency range of 8–12 GHz. It is possible to use the X-band operating state for communication in a cognitive radio environment. Used as a decoupling structure, metamaterial structures can increase isolation to more than 40 dB across the bandwidth. The suggested MIMO filtenna system has an envelope correlation coefficient of 2.4e−6, a peak gain of 6 dBi, and an impedance bandwidth of 7.4–7.75 GHz. The MIMO filtenna is constructed and measured, and the findings of the measurement and simulation are in good agreement.
期刊介绍:
The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.
The journal is an Open Access journal since 2004.