Dharshan Shylesh D S, Manikandan N, Sivasankar S, Surendran D, Jaganathan R, Mohan G
{"title":"地面控制点的数量、质量、水平和垂直分布对无人机测量定位精度的影响","authors":"Dharshan Shylesh D S, Manikandan N, Sivasankar S, Surendran D, Jaganathan R, Mohan G","doi":"10.1007/s12518-023-00531-w","DOIUrl":null,"url":null,"abstract":"<div><p>Quantity and distribution of Ground Control Points (GCPs) play a significant role in determining the positional accuracy of UAV photogrammetry. A dense GCP network helps in achieving good accuracy. However, the cost, time, and feasibility of setting up a dense network are challenging. Therefore, it is crucial to assess whether high accuracy can be achieved using minimal GCPs and its optimal distribution. This study investigated the effects of quantity, quality, horizontal, and vertical distribution using 0, 3–11 GCPs to identify a suitable configuration for a sparse GCP network. Thirty-eight configurations were experimented by distributing GCPs in the corners, edges, centre and vertically. Also, another sixteen configurations were used to understand the influence of incorrectly surveyed GCPs on positional accuracy. Horizontal and vertical Root Mean Square Error (RMSE) values were calculated from 79 Check Points for accuracy assessment. Initially, on assessing the effect of quantity, a higher count of GCPs produced high accuracy, but specific configurations using 4–5 GCPs rendered accuracy levels similar to 9–11 GCPs. On further investigation, configurations with few GCPs at the corners showed better accuracy than GCPs distributed only in the edge or centre. A significant reduction in RMSE<sub>z</sub> of ± 1.5 cm was witnessed by adding vertically distributed GCPs. Based on the results, configurations using 4–5 GCPs distributed vertically and at corners equalled the RMSE values of configurations using 8–11 GCPs, proving it to be an ideal distribution while using fewer GCPs. The poor quality of GCP resulted in low positional accuracy when a sparse number of GCPs were used.</p></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of quantity, quality, horizontal and vertical distribution of ground control points on the positional accuracy of UAV survey\",\"authors\":\"Dharshan Shylesh D S, Manikandan N, Sivasankar S, Surendran D, Jaganathan R, Mohan G\",\"doi\":\"10.1007/s12518-023-00531-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantity and distribution of Ground Control Points (GCPs) play a significant role in determining the positional accuracy of UAV photogrammetry. A dense GCP network helps in achieving good accuracy. However, the cost, time, and feasibility of setting up a dense network are challenging. Therefore, it is crucial to assess whether high accuracy can be achieved using minimal GCPs and its optimal distribution. This study investigated the effects of quantity, quality, horizontal, and vertical distribution using 0, 3–11 GCPs to identify a suitable configuration for a sparse GCP network. Thirty-eight configurations were experimented by distributing GCPs in the corners, edges, centre and vertically. Also, another sixteen configurations were used to understand the influence of incorrectly surveyed GCPs on positional accuracy. Horizontal and vertical Root Mean Square Error (RMSE) values were calculated from 79 Check Points for accuracy assessment. Initially, on assessing the effect of quantity, a higher count of GCPs produced high accuracy, but specific configurations using 4–5 GCPs rendered accuracy levels similar to 9–11 GCPs. On further investigation, configurations with few GCPs at the corners showed better accuracy than GCPs distributed only in the edge or centre. A significant reduction in RMSE<sub>z</sub> of ± 1.5 cm was witnessed by adding vertically distributed GCPs. Based on the results, configurations using 4–5 GCPs distributed vertically and at corners equalled the RMSE values of configurations using 8–11 GCPs, proving it to be an ideal distribution while using fewer GCPs. The poor quality of GCP resulted in low positional accuracy when a sparse number of GCPs were used.</p></div>\",\"PeriodicalId\":46286,\"journal\":{\"name\":\"Applied Geomatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12518-023-00531-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-023-00531-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Influence of quantity, quality, horizontal and vertical distribution of ground control points on the positional accuracy of UAV survey
Quantity and distribution of Ground Control Points (GCPs) play a significant role in determining the positional accuracy of UAV photogrammetry. A dense GCP network helps in achieving good accuracy. However, the cost, time, and feasibility of setting up a dense network are challenging. Therefore, it is crucial to assess whether high accuracy can be achieved using minimal GCPs and its optimal distribution. This study investigated the effects of quantity, quality, horizontal, and vertical distribution using 0, 3–11 GCPs to identify a suitable configuration for a sparse GCP network. Thirty-eight configurations were experimented by distributing GCPs in the corners, edges, centre and vertically. Also, another sixteen configurations were used to understand the influence of incorrectly surveyed GCPs on positional accuracy. Horizontal and vertical Root Mean Square Error (RMSE) values were calculated from 79 Check Points for accuracy assessment. Initially, on assessing the effect of quantity, a higher count of GCPs produced high accuracy, but specific configurations using 4–5 GCPs rendered accuracy levels similar to 9–11 GCPs. On further investigation, configurations with few GCPs at the corners showed better accuracy than GCPs distributed only in the edge or centre. A significant reduction in RMSEz of ± 1.5 cm was witnessed by adding vertically distributed GCPs. Based on the results, configurations using 4–5 GCPs distributed vertically and at corners equalled the RMSE values of configurations using 8–11 GCPs, proving it to be an ideal distribution while using fewer GCPs. The poor quality of GCP resulted in low positional accuracy when a sparse number of GCPs were used.
期刊介绍:
Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences.
The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology.
Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements