Guillaume Carlier, Alex Delalande, Quentin Merigot
{"title":"Wasserstein空间中质心的定量稳定性","authors":"Guillaume Carlier, Alex Delalande, Quentin Merigot","doi":"10.1007/s00440-023-01241-5","DOIUrl":null,"url":null,"abstract":"Wasserstein barycenters define averages of probability measures in a geometrically meaningful way. Their use is increasingly popular in applied fields, such as image, geometry or language processing. In these fields however, the probability measures of interest are often not accessible in their entirety and the practitioner may have to deal with statistical or computational approximations instead. In this article, we quantify the effect of such approximations on the corresponding barycenters. We show that Wasserstein barycenters depend in a Hölder-continuous way on their marginals under relatively mild assumptions. Our proof relies on recent estimates that allow to quantify the strong convexity of the barycenter functional. Consequences regarding the statistical estimation of Wasserstein barycenters and the convergence of regularized Wasserstein barycenters towards their non-regularized counterparts are explored.","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative stability of barycenters in the Wasserstein space\",\"authors\":\"Guillaume Carlier, Alex Delalande, Quentin Merigot\",\"doi\":\"10.1007/s00440-023-01241-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wasserstein barycenters define averages of probability measures in a geometrically meaningful way. Their use is increasingly popular in applied fields, such as image, geometry or language processing. In these fields however, the probability measures of interest are often not accessible in their entirety and the practitioner may have to deal with statistical or computational approximations instead. In this article, we quantify the effect of such approximations on the corresponding barycenters. We show that Wasserstein barycenters depend in a Hölder-continuous way on their marginals under relatively mild assumptions. Our proof relies on recent estimates that allow to quantify the strong convexity of the barycenter functional. Consequences regarding the statistical estimation of Wasserstein barycenters and the convergence of regularized Wasserstein barycenters towards their non-regularized counterparts are explored.\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-023-01241-5\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00440-023-01241-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Quantitative stability of barycenters in the Wasserstein space
Wasserstein barycenters define averages of probability measures in a geometrically meaningful way. Their use is increasingly popular in applied fields, such as image, geometry or language processing. In these fields however, the probability measures of interest are often not accessible in their entirety and the practitioner may have to deal with statistical or computational approximations instead. In this article, we quantify the effect of such approximations on the corresponding barycenters. We show that Wasserstein barycenters depend in a Hölder-continuous way on their marginals under relatively mild assumptions. Our proof relies on recent estimates that allow to quantify the strong convexity of the barycenter functional. Consequences regarding the statistical estimation of Wasserstein barycenters and the convergence of regularized Wasserstein barycenters towards their non-regularized counterparts are explored.
期刊介绍:
Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.