作为内在时钟的量子不确定性

Etera R. Livine
{"title":"作为内在时钟的量子不确定性","authors":"Etera R. Livine","doi":"10.1088/1751-8121/ad06fc","DOIUrl":null,"url":null,"abstract":"Abstract In quantum mechanics, a classical particle is raised to a wave-function, thereby acquiring many more degrees of freedom. For instance, in the semi-classical regime, while the position and momentum expectation values follow the classical trajectory, the uncertainty of a wave-packet can evolve and beat independently. We use this insight to revisit the dynamics of a 1d particle in a time-dependent harmonic well. One can solve it by considering time reparameterizations and the Virasoro group action to map the system to the harmonic oscillator with constant frequency. We prove that identifying such a simplifying time variable is naturally solved by quantizing the system and looking at the evolution of the width of a Gaussian wave-packet. We further show that the Ermakov-Lewis invariant for the classical evolution in a time-dependent harmonic potential is actually the quantum uncertainty of a Gaussian wave-packet. This naturally extends the classical Ermakov-Lewis invariant to a constant of motion for quantum systems following Schrodinger equation. We conclude with a discussion of potential applications to quantum gravity and quantum cosmology.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"26 16","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Quantum uncertainty as an intrinsic clock\",\"authors\":\"Etera R. Livine\",\"doi\":\"10.1088/1751-8121/ad06fc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In quantum mechanics, a classical particle is raised to a wave-function, thereby acquiring many more degrees of freedom. For instance, in the semi-classical regime, while the position and momentum expectation values follow the classical trajectory, the uncertainty of a wave-packet can evolve and beat independently. We use this insight to revisit the dynamics of a 1d particle in a time-dependent harmonic well. One can solve it by considering time reparameterizations and the Virasoro group action to map the system to the harmonic oscillator with constant frequency. We prove that identifying such a simplifying time variable is naturally solved by quantizing the system and looking at the evolution of the width of a Gaussian wave-packet. We further show that the Ermakov-Lewis invariant for the classical evolution in a time-dependent harmonic potential is actually the quantum uncertainty of a Gaussian wave-packet. This naturally extends the classical Ermakov-Lewis invariant to a constant of motion for quantum systems following Schrodinger equation. We conclude with a discussion of potential applications to quantum gravity and quantum cosmology.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"26 16\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad06fc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad06fc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在量子力学中,一个经典粒子被提升为波函数,从而获得更多的自由度。例如,在半经典状态下,当位置和动量期望值遵循经典轨迹时,波包的不确定性可以独立地演化和跳动。我们利用这一见解来重新审视一维粒子在时变谐波阱中的动力学。可以通过考虑时间再参数化和Virasoro群作用将系统映射到定频谐振子来解决。我们证明了识别这样一个简化的时间变量是通过量化系统和观察高斯波包宽度的演变来自然解决的。我们进一步证明了在时变谐波势中的经典演化的Ermakov-Lewis不变量实际上是高斯波包的量子不确定性。这自然地将经典的Ermakov-Lewis不变量扩展为遵循薛定谔方程的量子系统的运动常数。最后,我们讨论了量子引力和量子宇宙学的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum uncertainty as an intrinsic clock
Abstract In quantum mechanics, a classical particle is raised to a wave-function, thereby acquiring many more degrees of freedom. For instance, in the semi-classical regime, while the position and momentum expectation values follow the classical trajectory, the uncertainty of a wave-packet can evolve and beat independently. We use this insight to revisit the dynamics of a 1d particle in a time-dependent harmonic well. One can solve it by considering time reparameterizations and the Virasoro group action to map the system to the harmonic oscillator with constant frequency. We prove that identifying such a simplifying time variable is naturally solved by quantizing the system and looking at the evolution of the width of a Gaussian wave-packet. We further show that the Ermakov-Lewis invariant for the classical evolution in a time-dependent harmonic potential is actually the quantum uncertainty of a Gaussian wave-packet. This naturally extends the classical Ermakov-Lewis invariant to a constant of motion for quantum systems following Schrodinger equation. We conclude with a discussion of potential applications to quantum gravity and quantum cosmology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信