{"title":"基于无人机遥感图像和机器学习算法的地表结构分类","authors":"Ching Lung Fan","doi":"10.1007/s12518-023-00530-x","DOIUrl":null,"url":null,"abstract":"<div><p>The applicability of a machine learning algorithm can vary across regions due to disparities in image data sources, preprocessing techniques, and model training. To enhance the classification accuracy of ground surface structures, it is crucial to select an appropriate method tailored to the specific region. This study used highly-efficient UAV remote sensing photography and conducted training and tests using three supervised machine learning techniques, namely support vector machine (SVM), random forest (RF), and maximum likelihood (ML) as well as performed a cluster analysis using an unsupervised machine learning technique. The main objective of this study was to evaluate the effectiveness of four machine learning methods for classifying five distinct structures (forest, grassland, bare land, built-up area, and road) in UAV images. The machine learning methods will be trained using sample features extracted from the UAV images, and test classifications will be conducted for the five ground surface structures. The results demonstrated that the RF classifier outperformed the other methods, achieving performance metrics, including an accuracy of 91.78%, an area under the curve (AUC) of 0.93, a Kappa coefficient of 0.88, and a gain of 100%. The RF classifier showcased its capability to accurately differentiate between various ground surface structures by examining spectral composition, encompassing both natural and artificial elements, and making precise judgments based on factors such as color, color tone, and texture observed in the images.</p></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground surface structure classification using UAV remote sensing images and machine learning algorithms\",\"authors\":\"Ching Lung Fan\",\"doi\":\"10.1007/s12518-023-00530-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The applicability of a machine learning algorithm can vary across regions due to disparities in image data sources, preprocessing techniques, and model training. To enhance the classification accuracy of ground surface structures, it is crucial to select an appropriate method tailored to the specific region. This study used highly-efficient UAV remote sensing photography and conducted training and tests using three supervised machine learning techniques, namely support vector machine (SVM), random forest (RF), and maximum likelihood (ML) as well as performed a cluster analysis using an unsupervised machine learning technique. The main objective of this study was to evaluate the effectiveness of four machine learning methods for classifying five distinct structures (forest, grassland, bare land, built-up area, and road) in UAV images. The machine learning methods will be trained using sample features extracted from the UAV images, and test classifications will be conducted for the five ground surface structures. The results demonstrated that the RF classifier outperformed the other methods, achieving performance metrics, including an accuracy of 91.78%, an area under the curve (AUC) of 0.93, a Kappa coefficient of 0.88, and a gain of 100%. The RF classifier showcased its capability to accurately differentiate between various ground surface structures by examining spectral composition, encompassing both natural and artificial elements, and making precise judgments based on factors such as color, color tone, and texture observed in the images.</p></div>\",\"PeriodicalId\":46286,\"journal\":{\"name\":\"Applied Geomatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12518-023-00530-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-023-00530-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Ground surface structure classification using UAV remote sensing images and machine learning algorithms
The applicability of a machine learning algorithm can vary across regions due to disparities in image data sources, preprocessing techniques, and model training. To enhance the classification accuracy of ground surface structures, it is crucial to select an appropriate method tailored to the specific region. This study used highly-efficient UAV remote sensing photography and conducted training and tests using three supervised machine learning techniques, namely support vector machine (SVM), random forest (RF), and maximum likelihood (ML) as well as performed a cluster analysis using an unsupervised machine learning technique. The main objective of this study was to evaluate the effectiveness of four machine learning methods for classifying five distinct structures (forest, grassland, bare land, built-up area, and road) in UAV images. The machine learning methods will be trained using sample features extracted from the UAV images, and test classifications will be conducted for the five ground surface structures. The results demonstrated that the RF classifier outperformed the other methods, achieving performance metrics, including an accuracy of 91.78%, an area under the curve (AUC) of 0.93, a Kappa coefficient of 0.88, and a gain of 100%. The RF classifier showcased its capability to accurately differentiate between various ground surface structures by examining spectral composition, encompassing both natural and artificial elements, and making precise judgments based on factors such as color, color tone, and texture observed in the images.
期刊介绍:
Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences.
The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology.
Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements