{"title":"使用一种新颖的集成学习框架来检测财务报告不当行为","authors":"Siqi Pan, Qiang Ye, Wen Shi","doi":"10.1080/23270012.2023.2258372","DOIUrl":null,"url":null,"abstract":"AbstractOur research focuses on detecting financial reporting misconduct and derives a comprehensive misconduct sample using AAERs and intentional restatements. We develop a novel ensemble learning method, Multi-LightGBM, for highly imbalanced classification learning. We adopt a human-machine cooperation feature selection method, which can mitigate the limitation of incomplete theories, enhance the model performance, and guide researchers to develop new theories. We propose a cost-based measure, expected benefits of classification, to evaluate the economic performance of a model. The out-of-sample tests show that Multi-LightGBM, coupled with the features we selected, outperforms other predictive models. The finding that introducing intentional material restatements into our predictive model does not reduce the effectiveness of capturing AAERs has important implications for research on AAERs detection. Moreover, we can identify more misconduct firms with fewer resources by the misconduct sample relative to the standalone AAERs sample, which is quite beneficial for most model users.Keywords: financial reporting misconductensemble learningfeature selectionLightGBM Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by National Natural Science Foundation of China under [grant numbers 72071038, 72121001].","PeriodicalId":46290,"journal":{"name":"Journal of Management Analytics","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using a novel ensemble learning framework to detect financial reporting misconduct\",\"authors\":\"Siqi Pan, Qiang Ye, Wen Shi\",\"doi\":\"10.1080/23270012.2023.2258372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractOur research focuses on detecting financial reporting misconduct and derives a comprehensive misconduct sample using AAERs and intentional restatements. We develop a novel ensemble learning method, Multi-LightGBM, for highly imbalanced classification learning. We adopt a human-machine cooperation feature selection method, which can mitigate the limitation of incomplete theories, enhance the model performance, and guide researchers to develop new theories. We propose a cost-based measure, expected benefits of classification, to evaluate the economic performance of a model. The out-of-sample tests show that Multi-LightGBM, coupled with the features we selected, outperforms other predictive models. The finding that introducing intentional material restatements into our predictive model does not reduce the effectiveness of capturing AAERs has important implications for research on AAERs detection. Moreover, we can identify more misconduct firms with fewer resources by the misconduct sample relative to the standalone AAERs sample, which is quite beneficial for most model users.Keywords: financial reporting misconductensemble learningfeature selectionLightGBM Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by National Natural Science Foundation of China under [grant numbers 72071038, 72121001].\",\"PeriodicalId\":46290,\"journal\":{\"name\":\"Journal of Management Analytics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Management Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23270012.2023.2258372\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Management Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23270012.2023.2258372","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
Using a novel ensemble learning framework to detect financial reporting misconduct
AbstractOur research focuses on detecting financial reporting misconduct and derives a comprehensive misconduct sample using AAERs and intentional restatements. We develop a novel ensemble learning method, Multi-LightGBM, for highly imbalanced classification learning. We adopt a human-machine cooperation feature selection method, which can mitigate the limitation of incomplete theories, enhance the model performance, and guide researchers to develop new theories. We propose a cost-based measure, expected benefits of classification, to evaluate the economic performance of a model. The out-of-sample tests show that Multi-LightGBM, coupled with the features we selected, outperforms other predictive models. The finding that introducing intentional material restatements into our predictive model does not reduce the effectiveness of capturing AAERs has important implications for research on AAERs detection. Moreover, we can identify more misconduct firms with fewer resources by the misconduct sample relative to the standalone AAERs sample, which is quite beneficial for most model users.Keywords: financial reporting misconductensemble learningfeature selectionLightGBM Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by National Natural Science Foundation of China under [grant numbers 72071038, 72121001].
期刊介绍:
The Journal of Management Analytics (JMA) is dedicated to advancing the theory and application of data analytics in traditional business fields. It focuses on the intersection of data analytics with key disciplines such as accounting, finance, management, marketing, production/operations management, and supply chain management. JMA is particularly interested in research that explores the interface between data analytics and these business areas. The journal welcomes studies employing a range of research methods, including empirical research, big data analytics, data science, operations research, management science, decision science, and simulation modeling.