Harpreet Kaur, Nam Pham, Sergey Fomel, Zhicheng Geng, Luke Decker, Ben Gremillion, Michael Jervis, Raymond Abma, Shuang Gao
{"title":"地震相分类的深度学习框架","authors":"Harpreet Kaur, Nam Pham, Sergey Fomel, Zhicheng Geng, Luke Decker, Ben Gremillion, Michael Jervis, Raymond Abma, Shuang Gao","doi":"10.1190/int-2022-0048.1","DOIUrl":null,"url":null,"abstract":"We have proposed a deep neural network-based framework for seismic facies classification. We implement two different neural networks based on the architectures of DeepLabv3+ and generative adversarial network for segmentation and compare the mapping results from seismic reflection data to lithologic facies. DeepLabv3+ predictions have sharper boundaries between the predicted facies whereas generative adversarial network output has a better continuity of predicted facies. We incorporate uncertainty analysis into the workflow using a Bayesian framework. The proposed approach consisting of joint analysis of predicted facies from multiple networks along with uncertainty in prediction accelerates the interpretation process by reducing the need for human intervention and also lessens individual biases that an interpreter may bring. We determine the effectiveness of the proposed algorithm by testing on field data examples, and we find that the proposed workflow classifies facies accurately. This may potentially enable the development of depositional environment maps in areas of low well density.","PeriodicalId":51318,"journal":{"name":"Interpretation-A Journal of Subsurface Characterization","volume":"4 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A deep learning framework for seismic facies classification\",\"authors\":\"Harpreet Kaur, Nam Pham, Sergey Fomel, Zhicheng Geng, Luke Decker, Ben Gremillion, Michael Jervis, Raymond Abma, Shuang Gao\",\"doi\":\"10.1190/int-2022-0048.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have proposed a deep neural network-based framework for seismic facies classification. We implement two different neural networks based on the architectures of DeepLabv3+ and generative adversarial network for segmentation and compare the mapping results from seismic reflection data to lithologic facies. DeepLabv3+ predictions have sharper boundaries between the predicted facies whereas generative adversarial network output has a better continuity of predicted facies. We incorporate uncertainty analysis into the workflow using a Bayesian framework. The proposed approach consisting of joint analysis of predicted facies from multiple networks along with uncertainty in prediction accelerates the interpretation process by reducing the need for human intervention and also lessens individual biases that an interpreter may bring. We determine the effectiveness of the proposed algorithm by testing on field data examples, and we find that the proposed workflow classifies facies accurately. This may potentially enable the development of depositional environment maps in areas of low well density.\",\"PeriodicalId\":51318,\"journal\":{\"name\":\"Interpretation-A Journal of Subsurface Characterization\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interpretation-A Journal of Subsurface Characterization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/int-2022-0048.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interpretation-A Journal of Subsurface Characterization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/int-2022-0048.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A deep learning framework for seismic facies classification
We have proposed a deep neural network-based framework for seismic facies classification. We implement two different neural networks based on the architectures of DeepLabv3+ and generative adversarial network for segmentation and compare the mapping results from seismic reflection data to lithologic facies. DeepLabv3+ predictions have sharper boundaries between the predicted facies whereas generative adversarial network output has a better continuity of predicted facies. We incorporate uncertainty analysis into the workflow using a Bayesian framework. The proposed approach consisting of joint analysis of predicted facies from multiple networks along with uncertainty in prediction accelerates the interpretation process by reducing the need for human intervention and also lessens individual biases that an interpreter may bring. We determine the effectiveness of the proposed algorithm by testing on field data examples, and we find that the proposed workflow classifies facies accurately. This may potentially enable the development of depositional environment maps in areas of low well density.
期刊介绍:
***Jointly published by the American Association of Petroleum Geologists (AAPG) and the Society of Exploration Geophysicists (SEG)***
Interpretation is a new, peer-reviewed journal for advancing the practice of subsurface interpretation.