在300毫米CMOS导频线上完全制造出砷化镓纳米脊激光二极管

Yannick De Koninck, Charles Caer, Didit Yudistira, Marina Baryshnikova, Huseyin Sar, Saroj Patra, Ping-Yi Hsieh, Nadezda Kuznetsova, Davide Colucci, Alexey Milenin, Andualem Yimam, Geert Morthier, Dries Van Thourhout, Peter Verheyen, Marianna Pantouvaki, Bernardette Kunert, Joris Van Campenhout
{"title":"在300毫米CMOS导频线上完全制造出砷化镓纳米脊激光二极管","authors":"Yannick De Koninck, Charles Caer, Didit Yudistira, Marina Baryshnikova, Huseyin Sar, Saroj Patra, Ping-Yi Hsieh, Nadezda Kuznetsova, Davide Colucci, Alexey Milenin, Andualem Yimam, Geert Morthier, Dries Van Thourhout, Peter Verheyen, Marianna Pantouvaki, Bernardette Kunert, Joris Van Campenhout","doi":"10.21203/rs.3.rs-3187756/v1","DOIUrl":null,"url":null,"abstract":"Abstract Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute, and sense the world [1,2,3,4,5,6]. However, the lack of highly scalable, native CMOS-integrated light sources is one of the main factors hampering its widespread adoption. Despite significant progress in hybrid and heterogeneous integration of III-V light sources on silicon [7,8,9,10,11,12], monolithic integration by direct epitaxial growth of III-V materials remains the pinnacle in realizing cost-effective on-chip light sources. Here, we report the first electrically driven GaAs-based multi-quantum-well laser diodes fully fabricated on 300 mm Si wafers in a CMOS pilot manufacturing line. GaAs nano-ridge waveguides with embedded p-i-n diodes, InGaAs quantum wells and InGaP passivation layers are grown with high quality at wafer scale, leveraging selective-area epitaxy with aspect-ratio trapping. After III-V facet patterning and standard CMOS contact metallization, room-temperature continuous-wave lasing is demonstrated at wavelengths around 1020 nm in more than three hundred devices across a wafer, with threshold currents as low as 5 mA, output powers beyond 1 mW, laser linewidths down to 46 MHz, and laser operation up to 55 °C. These results illustrate the potential of the III-V/Si nano-ridge engineering concept for the monolithic integration of laser diodes in a Si photonics platform, enabling future cost-sensitive high-volume applications in optical sensing, interconnects and beyond.","PeriodicalId":500086,"journal":{"name":"Research Square (Research Square)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GaAs nano-ridge laser diodes fully fabricated in a 300 mm CMOS pilot line\",\"authors\":\"Yannick De Koninck, Charles Caer, Didit Yudistira, Marina Baryshnikova, Huseyin Sar, Saroj Patra, Ping-Yi Hsieh, Nadezda Kuznetsova, Davide Colucci, Alexey Milenin, Andualem Yimam, Geert Morthier, Dries Van Thourhout, Peter Verheyen, Marianna Pantouvaki, Bernardette Kunert, Joris Van Campenhout\",\"doi\":\"10.21203/rs.3.rs-3187756/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute, and sense the world [1,2,3,4,5,6]. However, the lack of highly scalable, native CMOS-integrated light sources is one of the main factors hampering its widespread adoption. Despite significant progress in hybrid and heterogeneous integration of III-V light sources on silicon [7,8,9,10,11,12], monolithic integration by direct epitaxial growth of III-V materials remains the pinnacle in realizing cost-effective on-chip light sources. Here, we report the first electrically driven GaAs-based multi-quantum-well laser diodes fully fabricated on 300 mm Si wafers in a CMOS pilot manufacturing line. GaAs nano-ridge waveguides with embedded p-i-n diodes, InGaAs quantum wells and InGaP passivation layers are grown with high quality at wafer scale, leveraging selective-area epitaxy with aspect-ratio trapping. After III-V facet patterning and standard CMOS contact metallization, room-temperature continuous-wave lasing is demonstrated at wavelengths around 1020 nm in more than three hundred devices across a wafer, with threshold currents as low as 5 mA, output powers beyond 1 mW, laser linewidths down to 46 MHz, and laser operation up to 55 °C. These results illustrate the potential of the III-V/Si nano-ridge engineering concept for the monolithic integration of laser diodes in a Si photonics platform, enabling future cost-sensitive high-volume applications in optical sensing, interconnects and beyond.\",\"PeriodicalId\":500086,\"journal\":{\"name\":\"Research Square (Research Square)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Square (Research Square)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-3187756/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Square (Research Square)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-3187756/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

硅光子学是一项快速发展的技术,有望彻底改变我们沟通、计算和感知世界的方式[1,2,3,4,5,6]。然而,缺乏高度可扩展的本地cmos集成光源是阻碍其广泛采用的主要因素之一。尽管III-V光源在硅上的杂化和异质集成取得了重大进展[7,8,9,10,11,12],但通过III-V材料的直接外延生长实现单片集成仍然是实现片上光源成本效益的顶峰。在这里,我们报告了第一个在CMOS中试生产线上完全在300 mm Si晶圆上制造的基于gaas的电驱动多量子阱激光二极管。利用具有宽高比捕获的选择性面积外延,在晶片尺度上高质量地生长了嵌入p-i-n二极管、InGaAs量子阱和InGaP钝化层的GaAs纳米脊波导。经过III-V小面图案化和标准CMOS接触金属化后,室温连续波激光在波长约1020 nm的情况下在晶圆上的300多个器件中得到了证明,阈值电流低至5 mA,输出功率超过1 mW,激光线宽低至46 MHz,激光工作温度高达55°C。这些结果说明了III-V/Si纳米脊工程概念在硅光子学平台中集成激光二极管的潜力,使未来在光学传感、互连等领域的成本敏感型大批量应用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GaAs nano-ridge laser diodes fully fabricated in a 300 mm CMOS pilot line
Abstract Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute, and sense the world [1,2,3,4,5,6]. However, the lack of highly scalable, native CMOS-integrated light sources is one of the main factors hampering its widespread adoption. Despite significant progress in hybrid and heterogeneous integration of III-V light sources on silicon [7,8,9,10,11,12], monolithic integration by direct epitaxial growth of III-V materials remains the pinnacle in realizing cost-effective on-chip light sources. Here, we report the first electrically driven GaAs-based multi-quantum-well laser diodes fully fabricated on 300 mm Si wafers in a CMOS pilot manufacturing line. GaAs nano-ridge waveguides with embedded p-i-n diodes, InGaAs quantum wells and InGaP passivation layers are grown with high quality at wafer scale, leveraging selective-area epitaxy with aspect-ratio trapping. After III-V facet patterning and standard CMOS contact metallization, room-temperature continuous-wave lasing is demonstrated at wavelengths around 1020 nm in more than three hundred devices across a wafer, with threshold currents as low as 5 mA, output powers beyond 1 mW, laser linewidths down to 46 MHz, and laser operation up to 55 °C. These results illustrate the potential of the III-V/Si nano-ridge engineering concept for the monolithic integration of laser diodes in a Si photonics platform, enabling future cost-sensitive high-volume applications in optical sensing, interconnects and beyond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信