Lorentz-Minkowski空间${\mathbb R}^{n+1}_1$中具有边界的类空间图形超曲面的各向异性逆平均曲率流

Pub Date : 2023-09-01 DOI:10.2748/tmj.20220203
Ya Gao, Jing Mao
{"title":"Lorentz-Minkowski空间${\\mathbb R}^{n+1}_1$中具有边界的类空间图形超曲面的各向异性逆平均曲率流","authors":"Ya Gao, Jing Mao","doi":"10.2748/tmj.20220203","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the evolution of spacelike graphic hypersurfaces defined over a convex piece of hyperbolic plane $\\mathscr{H}^{n}(1)$, of center at origin and radius 1, in the $(n+1)$-dimensional Lorentz-Minkowski space $\\mathbb{R}^{n+1}_{1}$ along an anisotropic inverse mean curvature flow with the vanishing Neumann boundary condition, and prove that this flow exists for all the time. Moreover, we can show that, after suitable rescaling, the evolving spacelike graphic hypersurfaces converge smoothly to a piece of hyperbolic plane of center at origin and prescribed radius, which actually corresponds to a constant function defined over the piece of $\\mathscr{H}^{n}(1)$, as time tends to infinity. Clearly, this conclusion is an extension of our previous work [2].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An anisotropic inverse mean curvature flow for spacelike graphic hypersurfaces with boundary in Lorentz-Minkowski space ${\\\\mathbb R}^{n+1}_1$\",\"authors\":\"Ya Gao, Jing Mao\",\"doi\":\"10.2748/tmj.20220203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the evolution of spacelike graphic hypersurfaces defined over a convex piece of hyperbolic plane $\\\\mathscr{H}^{n}(1)$, of center at origin and radius 1, in the $(n+1)$-dimensional Lorentz-Minkowski space $\\\\mathbb{R}^{n+1}_{1}$ along an anisotropic inverse mean curvature flow with the vanishing Neumann boundary condition, and prove that this flow exists for all the time. Moreover, we can show that, after suitable rescaling, the evolving spacelike graphic hypersurfaces converge smoothly to a piece of hyperbolic plane of center at origin and prescribed radius, which actually corresponds to a constant function defined over the piece of $\\\\mathscr{H}^{n}(1)$, as time tends to infinity. Clearly, this conclusion is an extension of our previous work [2].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2748/tmj.20220203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2748/tmj.20220203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了在$(n+1)$维Lorentz-Minkowski空间$\mathbb{R}} {n+1}_{1}$中中心原点半径为1的双曲平面$\mathscr{H}^{n}(1)$凸块上沿具有消失的Neumann边界条件的各向异性逆平均曲率流的类空间图形超曲面的演化,并证明了该流一直存在。此外,我们可以证明,经过适当的重新缩放后,演化的类空间图形超曲面平滑地收敛到原点中心和规定半径的一块双曲平面上,这实际上对应于在$\mathscr{H}^{n}(1)$块上定义的常数函数。显然,这个结论是我们之前工作的延伸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
An anisotropic inverse mean curvature flow for spacelike graphic hypersurfaces with boundary in Lorentz-Minkowski space ${\mathbb R}^{n+1}_1$
In this paper, we consider the evolution of spacelike graphic hypersurfaces defined over a convex piece of hyperbolic plane $\mathscr{H}^{n}(1)$, of center at origin and radius 1, in the $(n+1)$-dimensional Lorentz-Minkowski space $\mathbb{R}^{n+1}_{1}$ along an anisotropic inverse mean curvature flow with the vanishing Neumann boundary condition, and prove that this flow exists for all the time. Moreover, we can show that, after suitable rescaling, the evolving spacelike graphic hypersurfaces converge smoothly to a piece of hyperbolic plane of center at origin and prescribed radius, which actually corresponds to a constant function defined over the piece of $\mathscr{H}^{n}(1)$, as time tends to infinity. Clearly, this conclusion is an extension of our previous work [2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信