有界线性算子的正则$^*$-代数:非交换布尔代数理论的一种新方法

IF 0.4 4区 数学 Q4 MATHEMATICS
Michiya Mori
{"title":"有界线性算子的正则$^*$-代数:非交换布尔代数理论的一种新方法","authors":"Michiya Mori","doi":"10.2748/tmj.20220316","DOIUrl":null,"url":null,"abstract":"We study (von Neumann) regular $^*$-subalgebras of $B(H)$, which we call R$^*$-algebras. The class of R$^*$-algebras coincides with that of “E$^*$-algebras that are pre-C$^*$-algebras” in the sense of Z. Szűcs and B. Takács. We give examples, properties and questions of R$^*$-algebras. We observe that the class of unital commutative R$^*$-algebras has a canonical one-to-one correspondence with the class of Boolean algebras. This motivates the study of R$^*$-algebras as that of noncommutative Boolean algebras. We explain that seemingly unrelated topics of functional analysis, like AF C$^*$-algebras and incomplete inner product spaces, naturally arise in the investigation of R$^*$-algebras. We obtain a number of results on R$^*$-algebras by applying various famous theorems in the literature.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":"27 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On regular $^*$-algebras of bounded linear operators: A new approach towards a theory of noncommutative Boolean algebras\",\"authors\":\"Michiya Mori\",\"doi\":\"10.2748/tmj.20220316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study (von Neumann) regular $^*$-subalgebras of $B(H)$, which we call R$^*$-algebras. The class of R$^*$-algebras coincides with that of “E$^*$-algebras that are pre-C$^*$-algebras” in the sense of Z. Szűcs and B. Takács. We give examples, properties and questions of R$^*$-algebras. We observe that the class of unital commutative R$^*$-algebras has a canonical one-to-one correspondence with the class of Boolean algebras. This motivates the study of R$^*$-algebras as that of noncommutative Boolean algebras. We explain that seemingly unrelated topics of functional analysis, like AF C$^*$-algebras and incomplete inner product spaces, naturally arise in the investigation of R$^*$-algebras. We obtain a number of results on R$^*$-algebras by applying various famous theorems in the literature.\",\"PeriodicalId\":54427,\"journal\":{\"name\":\"Tohoku Mathematical Journal\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tohoku Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2748/tmj.20220316\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2748/tmj.20220316","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究B(H)$的(von Neumann)正则$^*$-子代数,我们称之为R$^*$-代数。R$^*$-代数的类别与Z. Szűcs和B. Takács意义上的“在c $^*$-代数之前的E$^*$-代数”的类别一致。给出了R$^*$-代数的例子、性质和问题。我们观察到一元可交换R$^*$-代数类与布尔代数类具有标准的一对一对应关系。这激发了R$^*$-代数作为非交换布尔代数的研究。我们解释了看似无关的泛函分析主题,如AF C$^*$-代数和不完全内积空间,自然会出现在R$^*$-代数的研究中。应用文献中一些著名的定理,得到了关于R$^*$-代数的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On regular $^*$-algebras of bounded linear operators: A new approach towards a theory of noncommutative Boolean algebras
We study (von Neumann) regular $^*$-subalgebras of $B(H)$, which we call R$^*$-algebras. The class of R$^*$-algebras coincides with that of “E$^*$-algebras that are pre-C$^*$-algebras” in the sense of Z. Szűcs and B. Takács. We give examples, properties and questions of R$^*$-algebras. We observe that the class of unital commutative R$^*$-algebras has a canonical one-to-one correspondence with the class of Boolean algebras. This motivates the study of R$^*$-algebras as that of noncommutative Boolean algebras. We explain that seemingly unrelated topics of functional analysis, like AF C$^*$-algebras and incomplete inner product spaces, naturally arise in the investigation of R$^*$-algebras. We obtain a number of results on R$^*$-algebras by applying various famous theorems in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
22
审稿时长
>12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信