支持向量回归与随机森林回归算法在黄金价格预测中的比较

Samuel Valentino Hutagalung, Yennimar Yennimar, Erikson Roni Rumapea, Michael Justin Gesitera Hia, Terkelin Sembiring, Dhanny Rukmana Manday
{"title":"支持向量回归与随机森林回归算法在黄金价格预测中的比较","authors":"Samuel Valentino Hutagalung, Yennimar Yennimar, Erikson Roni Rumapea, Michael Justin Gesitera Hia, Terkelin Sembiring, Dhanny Rukmana Manday","doi":"10.34012/jurnalsisteminformasidanilmukomputer.v7i1.4125","DOIUrl":null,"url":null,"abstract":"This research was conducted to test how the Support Vector Regression and Random Forest Regression algorithms predict gold futures prices. The data used in this research was taken from the Investing.com website which will later be processed into a prediction model by comparing the SVR and RVR algorithms. The Support Vector Regression and Random Forest Regression algorithms will be tested to see the performance of each prediction model. The test results show that the Support Vector Regression model is superior in terms of accuracy with a value of 83%. However, the Random Forest Regression algorithm is superior with a smaller error rate, namely with an MSE value of 270.85 and an MAE value of 12.53. Keyword: Comparison, Prediction, Support Vector Regression, Random Forest Regression.","PeriodicalId":499639,"journal":{"name":"Jusikom : Jurnal Sistem Informasi Ilmu Komputer","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPARISON OF SUPPORT VECTOR REGRESSION AND RANDOM FOREST REGRESSION ALGORITHMS ON GOLD PRICE PREDICTIONS\",\"authors\":\"Samuel Valentino Hutagalung, Yennimar Yennimar, Erikson Roni Rumapea, Michael Justin Gesitera Hia, Terkelin Sembiring, Dhanny Rukmana Manday\",\"doi\":\"10.34012/jurnalsisteminformasidanilmukomputer.v7i1.4125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research was conducted to test how the Support Vector Regression and Random Forest Regression algorithms predict gold futures prices. The data used in this research was taken from the Investing.com website which will later be processed into a prediction model by comparing the SVR and RVR algorithms. The Support Vector Regression and Random Forest Regression algorithms will be tested to see the performance of each prediction model. The test results show that the Support Vector Regression model is superior in terms of accuracy with a value of 83%. However, the Random Forest Regression algorithm is superior with a smaller error rate, namely with an MSE value of 270.85 and an MAE value of 12.53. Keyword: Comparison, Prediction, Support Vector Regression, Random Forest Regression.\",\"PeriodicalId\":499639,\"journal\":{\"name\":\"Jusikom : Jurnal Sistem Informasi Ilmu Komputer\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jusikom : Jurnal Sistem Informasi Ilmu Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v7i1.4125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jusikom : Jurnal Sistem Informasi Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v7i1.4125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在检验支持向量回归和随机森林回归算法对黄金期货价格的预测效果。本研究中使用的数据来自Investing.com网站,稍后将通过比较SVR和RVR算法处理成预测模型。将测试支持向量回归和随机森林回归算法,以查看每个预测模型的性能。测试结果表明,支持向量回归模型在准确率方面具有优势,达到83%。随机森林回归算法的优势在于错误率较小,MSE为270.85,MAE为12.53。关键词:比较预测支持向量回归随机森林回归
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMPARISON OF SUPPORT VECTOR REGRESSION AND RANDOM FOREST REGRESSION ALGORITHMS ON GOLD PRICE PREDICTIONS
This research was conducted to test how the Support Vector Regression and Random Forest Regression algorithms predict gold futures prices. The data used in this research was taken from the Investing.com website which will later be processed into a prediction model by comparing the SVR and RVR algorithms. The Support Vector Regression and Random Forest Regression algorithms will be tested to see the performance of each prediction model. The test results show that the Support Vector Regression model is superior in terms of accuracy with a value of 83%. However, the Random Forest Regression algorithm is superior with a smaller error rate, namely with an MSE value of 270.85 and an MAE value of 12.53. Keyword: Comparison, Prediction, Support Vector Regression, Random Forest Regression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信