线性对流扩散方程的隐-显龙格-库塔时间离散局部不连续Galerkin方法的一致稳定性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Haijin Wang, Fengyan Li, Chi-Wang Shu, Qiang Zhang
{"title":"线性对流扩散方程的隐-显龙格-库塔时间离散局部不连续Galerkin方法的一致稳定性","authors":"Haijin Wang, Fengyan Li, Chi-Wang Shu, Qiang Zhang","doi":"10.1090/mcom/3842","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the linear convection-diffusion equation in one dimension with periodic boundary conditions, and analyze the stability of fully discrete methods that are defined with local discontinuous Galerkin (LDG) methods in space and several implicit-explicit (IMEX) Runge-Kutta methods in time. By using the forward temporal differences and backward temporal differences, respectively, we establish two general frameworks of the energy-method based stability analysis. From here, the fully discrete schemes being considered are shown to have monotonicity stability, i.e. the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm of the numerical solution does not increase in time, under the time step condition <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau less-than-or-equal-to script upper F left-parenthesis h slash c comma d slash c squared right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">F</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>h</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>c</mml:mi> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:msup> <mml:mi>c</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\tau \\le \\mathcal {F}(h/c, d/c^2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with the convection coefficient <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"c\"> <mml:semantics> <mml:mi>c</mml:mi> <mml:annotation encoding=\"application/x-tex\">c</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the diffusion coefficient <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\"application/x-tex\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and the mesh size <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\"application/x-tex\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper F\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">F</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {F}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> depends on the specific IMEX temporal method, the polynomial degree <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the discrete space, and the mesh regularity parameter. Moreover, the time step condition becomes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau less-than-or-equivalent-to h slash c\"> <mml:semantics> <mml:mrow> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo>≲<!-- ≲ --></mml:mo> <mml:mi>h</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>c</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\tau \\lesssim h/c</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the convection-dominated regime and it becomes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau less-than-or-equivalent-to d slash c squared\"> <mml:semantics> <mml:mrow> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo>≲<!-- ≲ --></mml:mo> <mml:mi>d</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:msup> <mml:mi>c</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\tau \\lesssim d/c^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the diffusion-dominated regime. The result is improved for a first order IMEX-LDG method. To complement the theoretical analysis, numerical experiments are further carried out, leading to slightly stricter time step conditions that can be used by practitioners. Uniform stability with respect to the strength of the convection and diffusion effects can especially be relevant to guide the choice of time step sizes in practice, e.g. when the convection-diffusion equations are convection-dominated in some sub-regions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform stability for local discontinuous Galerkin methods with implicit-explicit Runge-Kutta time discretizations for linear convection-diffusion equation\",\"authors\":\"Haijin Wang, Fengyan Li, Chi-Wang Shu, Qiang Zhang\",\"doi\":\"10.1090/mcom/3842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the linear convection-diffusion equation in one dimension with periodic boundary conditions, and analyze the stability of fully discrete methods that are defined with local discontinuous Galerkin (LDG) methods in space and several implicit-explicit (IMEX) Runge-Kutta methods in time. By using the forward temporal differences and backward temporal differences, respectively, we establish two general frameworks of the energy-method based stability analysis. From here, the fully discrete schemes being considered are shown to have monotonicity stability, i.e. the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L squared\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm of the numerical solution does not increase in time, under the time step condition <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"tau less-than-or-equal-to script upper F left-parenthesis h slash c comma d slash c squared right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">F</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>h</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>c</mml:mi> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:msup> <mml:mi>c</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tau \\\\le \\\\mathcal {F}(h/c, d/c^2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with the convection coefficient <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"c\\\"> <mml:semantics> <mml:mi>c</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">c</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the diffusion coefficient <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and the mesh size <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h\\\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The function <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper F\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">F</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {F}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> depends on the specific IMEX temporal method, the polynomial degree <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the discrete space, and the mesh regularity parameter. Moreover, the time step condition becomes <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"tau less-than-or-equivalent-to h slash c\\\"> <mml:semantics> <mml:mrow> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo>≲<!-- ≲ --></mml:mo> <mml:mi>h</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>c</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tau \\\\lesssim h/c</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the convection-dominated regime and it becomes <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"tau less-than-or-equivalent-to d slash c squared\\\"> <mml:semantics> <mml:mrow> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo>≲<!-- ≲ --></mml:mo> <mml:mi>d</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:msup> <mml:mi>c</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tau \\\\lesssim d/c^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the diffusion-dominated regime. The result is improved for a first order IMEX-LDG method. To complement the theoretical analysis, numerical experiments are further carried out, leading to slightly stricter time step conditions that can be used by practitioners. Uniform stability with respect to the strength of the convection and diffusion effects can especially be relevant to guide the choice of time step sizes in practice, e.g. when the convection-diffusion equations are convection-dominated in some sub-regions.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑具有周期边界条件的一维线性对流扩散方程,分析了在空间上由局部不连续伽辽金(LDG)方法和在时间上由几种隐式-显式(IMEX)龙格-库塔方法定义的全离散方法的稳定性。分别利用前向时间差和后向时间差,建立了基于能量法的稳定性分析的两种一般框架。由此可见,所考虑的全离散格式具有单调稳定性,即在时间步长条件τ≤F(h/c, d/c 2) \tau\le\mathcal F{(h/c, d/c^2),对流系数c c,扩散系数d d和网格尺寸h h下,数值解的l2 L^2范数不随时间增加。函数F }\mathcal F{取决于具体的IMEX时间方法、离散空间的多项式度k k和网格规则参数。此外,时间步长条件在对流主导下变为τ τ h/c }\tau\lesssim h/c,在扩散主导下变为τ τ d/c 2 \tau\lesssim d/c^2。对一阶IMEX-LDG方法的结果进行了改进。为了补充理论分析,进一步进行了数值实验,得出了稍微严格的时间步长条件,可供实践者使用。对流和扩散效应强度的均匀稳定性对于指导实际中时间步长的选择尤其重要,例如当对流-扩散方程在某些子区域以对流为主时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform stability for local discontinuous Galerkin methods with implicit-explicit Runge-Kutta time discretizations for linear convection-diffusion equation
In this paper, we consider the linear convection-diffusion equation in one dimension with periodic boundary conditions, and analyze the stability of fully discrete methods that are defined with local discontinuous Galerkin (LDG) methods in space and several implicit-explicit (IMEX) Runge-Kutta methods in time. By using the forward temporal differences and backward temporal differences, respectively, we establish two general frameworks of the energy-method based stability analysis. From here, the fully discrete schemes being considered are shown to have monotonicity stability, i.e. the L 2 L^2 norm of the numerical solution does not increase in time, under the time step condition τ F ( h / c , d / c 2 ) \tau \le \mathcal {F}(h/c, d/c^2) , with the convection coefficient c c , the diffusion coefficient d d , and the mesh size h h . The function F \mathcal {F} depends on the specific IMEX temporal method, the polynomial degree k k of the discrete space, and the mesh regularity parameter. Moreover, the time step condition becomes τ h / c \tau \lesssim h/c in the convection-dominated regime and it becomes τ d / c 2 \tau \lesssim d/c^2 in the diffusion-dominated regime. The result is improved for a first order IMEX-LDG method. To complement the theoretical analysis, numerical experiments are further carried out, leading to slightly stricter time step conditions that can be used by practitioners. Uniform stability with respect to the strength of the convection and diffusion effects can especially be relevant to guide the choice of time step sizes in practice, e.g. when the convection-diffusion equations are convection-dominated in some sub-regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信