丢番图方程𝑈_{𝑛}-𝑏^{𝑚}=𝑐

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Sebastian Heintze, Robert Tichy, Ingrid Vukusic, Volker Ziegler
{"title":"丢番图方程𝑈_{𝑛}-𝑏^{𝑚}=𝑐","authors":"Sebastian Heintze, Robert Tichy, Ingrid Vukusic, Volker Ziegler","doi":"10.1090/mcom/3854","DOIUrl":null,"url":null,"abstract":"Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper U Subscript n Baseline right-parenthesis Subscript n element-of double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>U</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(U_n)_{n\\in \\mathbb {N}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a fixed linear recurrence sequence defined over the integers (with some technical restrictions). We prove that there exist effectively computable constants <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N 0\"> <mml:semantics> <mml:msub> <mml:mi>N</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">N_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b comma c element-of double-struck upper Z\"> <mml:semantics> <mml:mrow> <mml:mi>b</mml:mi> <mml:mo>,</mml:mo> <mml:mi>c</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">b,c\\in \\mathbb {Z}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b greater-than upper B\"> <mml:semantics> <mml:mrow> <mml:mi>b</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">b&gt; B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the equation <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U Subscript n Baseline minus b Superscript m Baseline equals c\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>U</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:msup> <mml:mi>b</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>c</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">U_n - b^m = c</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has at most two distinct solutions <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis n comma m right-parenthesis element-of double-struck upper N squared\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(n,m)\\in \\mathbb {N}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to upper N 0\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:msub> <mml:mi>N</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n\\geq N_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">m\\geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Moreover, we apply our result to the special case of Tribonacci numbers given by <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T 1 equals upper T 2 equals 1\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>T</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>T</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T_1= T_2=1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T 3 equals 2\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>T</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T_3=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Subscript n Baseline equals upper T Subscript n minus 1 Baseline plus upper T Subscript n minus 2 Baseline plus upper T Subscript n minus 3\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>T</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>T</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>T</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>T</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T_{n}=T_{n-1}+T_{n-2}+T_{n-3}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 4\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n\\geq 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. By means of the LLL-algorithm and continued fraction reduction we are able to prove <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N 0 equals 2\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>N</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">N_0=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B equals e Superscript 438\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>438</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B=e^{438}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The corresponding reduction algorithm is implemented in Sage.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"193 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Diophantine equation 𝑈_{𝑛}-𝑏^{𝑚}=𝑐\",\"authors\":\"Sebastian Heintze, Robert Tichy, Ingrid Vukusic, Volker Ziegler\",\"doi\":\"10.1090/mcom/3854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper U Subscript n Baseline right-parenthesis Subscript n element-of double-struck upper N\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>U</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>n</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(U_n)_{n\\\\in \\\\mathbb {N}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a fixed linear recurrence sequence defined over the integers (with some technical restrictions). We prove that there exist effectively computable constants <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B\\\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N 0\\\"> <mml:semantics> <mml:msub> <mml:mi>N</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">N_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that for any <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"b comma c element-of double-struck upper Z\\\"> <mml:semantics> <mml:mrow> <mml:mi>b</mml:mi> <mml:mo>,</mml:mo> <mml:mi>c</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">b,c\\\\in \\\\mathbb {Z}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"b greater-than upper B\\\"> <mml:semantics> <mml:mrow> <mml:mi>b</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">b&gt; B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the equation <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper U Subscript n Baseline minus b Superscript m Baseline equals c\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>U</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:msup> <mml:mi>b</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>c</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">U_n - b^m = c</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has at most two distinct solutions <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis n comma m right-parenthesis element-of double-struck upper N squared\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(n,m)\\\\in \\\\mathbb {N}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n greater-than-or-equal-to upper N 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:msub> <mml:mi>N</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">n\\\\geq N_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m greater-than-or-equal-to 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">m\\\\geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Moreover, we apply our result to the special case of Tribonacci numbers given by <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T 1 equals upper T 2 equals 1\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>T</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>T</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">T_1= T_2=1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T 3 equals 2\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>T</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">T_3=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T Subscript n Baseline equals upper T Subscript n minus 1 Baseline plus upper T Subscript n minus 2 Baseline plus upper T Subscript n minus 3\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>T</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>T</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>T</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>T</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">T_{n}=T_{n-1}+T_{n-2}+T_{n-3}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n greater-than-or-equal-to 4\\\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">n\\\\geq 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. By means of the LLL-algorithm and continued fraction reduction we are able to prove <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N 0 equals 2\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>N</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">N_0=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B equals e Superscript 438\\\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>438</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">B=e^{438}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The corresponding reduction algorithm is implemented in Sage.\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"193 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3854\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3854","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

让U (n) n∈{n的n (U_n)在\ mathbb {n}}成为一个固定recurrence线性序列):通过和一些技术restrictions integers杂志》()。我们证明,以至于有存在effectively computable constants B B和N 0 N_0如此那车上为B、c∈Z B、c和B在\ mathbb {Z} >B b>B《equation U n−B = c U_n - B ^ m = c已经在大多数二distinct解决方案2 (n, m)∈n (n, m)在\ mathbb {n ^ 2的n和n≥0 \ geq N_0和m≥1 \ geq 1。而且,我们专心论点特别Tribonacci数字赐予的凯斯》由T = T = 2 = 1 T_1 = T_2 = 1 , 3 = 2 T_3 = 2 T T T和n = n−1 + T + n−2 T n−3 T_ {} = T_ {n-1} T_{已经开始}+ T_ {n-3}为n≥4 \ geq 4。我们可以证明N =2 N_0=2和B=e = B=e。corresponding算法正在以Sage的方式实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Diophantine equation 𝑈_{𝑛}-𝑏^{𝑚}=𝑐
Let ( U n ) n N (U_n)_{n\in \mathbb {N}} be a fixed linear recurrence sequence defined over the integers (with some technical restrictions). We prove that there exist effectively computable constants B B and N 0 N_0 such that for any b , c Z b,c\in \mathbb {Z} with b > B b> B the equation U n b m = c U_n - b^m = c has at most two distinct solutions ( n , m ) N 2 (n,m)\in \mathbb {N}^2 with n N 0 n\geq N_0 and m 1 m\geq 1 . Moreover, we apply our result to the special case of Tribonacci numbers given by T 1 = T 2 = 1 T_1= T_2=1 , T 3 = 2 T_3=2 and T n = T n 1 + T n 2 + T n 3 T_{n}=T_{n-1}+T_{n-2}+T_{n-3} for n 4 n\geq 4 . By means of the LLL-algorithm and continued fraction reduction we are able to prove N 0 = 2 N_0=2 and B = e 438 B=e^{438} . The corresponding reduction algorithm is implemented in Sage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信