{"title":"基于自适应参数控制策略的头脑风暴优化算法求解多个最优解","authors":"Yuhui Zhang, Wenhong Wei, Shaohao Xie, Zijia Wang","doi":"10.1007/s44196-023-00326-2","DOIUrl":null,"url":null,"abstract":"Abstract Real-world optimization problems often have multiple optimal solutions and simultaneously finding these optimal solutions is beneficial yet challenging. Brain storm optimization (BSO) is a relatively new paradigm of swarm intelligence algorithm that has been shown to be effective in solving global optimization problems, but it has not been fully exploited for multimodal optimization problems. A simple control strategy for the step size parameter in BSO cannot meet the need of optima finding task in multimodal landscapes and can possibly be refined and optimized. In this paper, we propose an adaptive BSO (ABSO) algorithm that adaptively adjusts the step size parameter according to the quality of newly created solutions. Extensive experiments are conducted on a set of multimodal optimization problems to evaluate the performance of ABSO and the experimental results show that ABSO outperforms existing BSO algorithms and some recently developed algorithms. BSO has great potential in multimodal optimization and is expected to be useful for solving real-world optimization problems that have multiple optimal solutions.","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"4 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain Storm Optimization Algorithm with an Adaptive Parameter Control Strategy for Finding Multiple Optimal Solutions\",\"authors\":\"Yuhui Zhang, Wenhong Wei, Shaohao Xie, Zijia Wang\",\"doi\":\"10.1007/s44196-023-00326-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Real-world optimization problems often have multiple optimal solutions and simultaneously finding these optimal solutions is beneficial yet challenging. Brain storm optimization (BSO) is a relatively new paradigm of swarm intelligence algorithm that has been shown to be effective in solving global optimization problems, but it has not been fully exploited for multimodal optimization problems. A simple control strategy for the step size parameter in BSO cannot meet the need of optima finding task in multimodal landscapes and can possibly be refined and optimized. In this paper, we propose an adaptive BSO (ABSO) algorithm that adaptively adjusts the step size parameter according to the quality of newly created solutions. Extensive experiments are conducted on a set of multimodal optimization problems to evaluate the performance of ABSO and the experimental results show that ABSO outperforms existing BSO algorithms and some recently developed algorithms. BSO has great potential in multimodal optimization and is expected to be useful for solving real-world optimization problems that have multiple optimal solutions.\",\"PeriodicalId\":54967,\"journal\":{\"name\":\"International Journal of Computational Intelligence Systems\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Intelligence Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44196-023-00326-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44196-023-00326-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Brain Storm Optimization Algorithm with an Adaptive Parameter Control Strategy for Finding Multiple Optimal Solutions
Abstract Real-world optimization problems often have multiple optimal solutions and simultaneously finding these optimal solutions is beneficial yet challenging. Brain storm optimization (BSO) is a relatively new paradigm of swarm intelligence algorithm that has been shown to be effective in solving global optimization problems, but it has not been fully exploited for multimodal optimization problems. A simple control strategy for the step size parameter in BSO cannot meet the need of optima finding task in multimodal landscapes and can possibly be refined and optimized. In this paper, we propose an adaptive BSO (ABSO) algorithm that adaptively adjusts the step size parameter according to the quality of newly created solutions. Extensive experiments are conducted on a set of multimodal optimization problems to evaluate the performance of ABSO and the experimental results show that ABSO outperforms existing BSO algorithms and some recently developed algorithms. BSO has great potential in multimodal optimization and is expected to be useful for solving real-world optimization problems that have multiple optimal solutions.
期刊介绍:
The International Journal of Computational Intelligence Systems publishes original research on all aspects of applied computational intelligence, especially targeting papers demonstrating the use of techniques and methods originating from computational intelligence theory. The core theories of computational intelligence are fuzzy logic, neural networks, evolutionary computation and probabilistic reasoning. The journal publishes only articles related to the use of computational intelligence and broadly covers the following topics:
-Autonomous reasoning-
Bio-informatics-
Cloud computing-
Condition monitoring-
Data science-
Data mining-
Data visualization-
Decision support systems-
Fault diagnosis-
Intelligent information retrieval-
Human-machine interaction and interfaces-
Image processing-
Internet and networks-
Noise analysis-
Pattern recognition-
Prediction systems-
Power (nuclear) safety systems-
Process and system control-
Real-time systems-
Risk analysis and safety-related issues-
Robotics-
Signal and image processing-
IoT and smart environments-
Systems integration-
System control-
System modelling and optimization-
Telecommunications-
Time series prediction-
Warning systems-
Virtual reality-
Web intelligence-
Deep learning