Dejun Liu, Chao Song, Ming Du, Guangda Chen, Peilin Liu, Mahmoud A AL-Shurufa, Yanming Cheng
{"title":"环邻补偿多驱动同步控制的自耦合PID研究","authors":"Dejun Liu, Chao Song, Ming Du, Guangda Chen, Peilin Liu, Mahmoud A AL-Shurufa, Yanming Cheng","doi":"10.1177/00202940231192990","DOIUrl":null,"url":null,"abstract":"Multi-motor synchronous drive system is increasingly widely used in industry and manufacturing, where its control structure and control strategy affect the quality and efficiency of production. In order to solve the contradiction between fastness and overshoot, and the difficulty in determining the compensation law in the conventional PID, cross-coupling control, and master-slave control strategies used in multi-motor control, this paper proposes a self-coupling PID control strategy based on ring adjacent compensation to reduce the complexity of the control structure. Furthermore, this paper analyzes the self-coupling PID parameter tuning rules and establishes the control structure of the ring coupling strategy, and proves its validity mathematically. The simulation results verify that the proposed strategy provides a fast response speed, high control precision, good disturbance rejection, and synchronization performance.","PeriodicalId":49849,"journal":{"name":"Measurement & Control","volume":"45 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on self-coupling PID for multi-driven synchronization control with ring adjacent compensation\",\"authors\":\"Dejun Liu, Chao Song, Ming Du, Guangda Chen, Peilin Liu, Mahmoud A AL-Shurufa, Yanming Cheng\",\"doi\":\"10.1177/00202940231192990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-motor synchronous drive system is increasingly widely used in industry and manufacturing, where its control structure and control strategy affect the quality and efficiency of production. In order to solve the contradiction between fastness and overshoot, and the difficulty in determining the compensation law in the conventional PID, cross-coupling control, and master-slave control strategies used in multi-motor control, this paper proposes a self-coupling PID control strategy based on ring adjacent compensation to reduce the complexity of the control structure. Furthermore, this paper analyzes the self-coupling PID parameter tuning rules and establishes the control structure of the ring coupling strategy, and proves its validity mathematically. The simulation results verify that the proposed strategy provides a fast response speed, high control precision, good disturbance rejection, and synchronization performance.\",\"PeriodicalId\":49849,\"journal\":{\"name\":\"Measurement & Control\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940231192990\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231192990","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Research on self-coupling PID for multi-driven synchronization control with ring adjacent compensation
Multi-motor synchronous drive system is increasingly widely used in industry and manufacturing, where its control structure and control strategy affect the quality and efficiency of production. In order to solve the contradiction between fastness and overshoot, and the difficulty in determining the compensation law in the conventional PID, cross-coupling control, and master-slave control strategies used in multi-motor control, this paper proposes a self-coupling PID control strategy based on ring adjacent compensation to reduce the complexity of the control structure. Furthermore, this paper analyzes the self-coupling PID parameter tuning rules and establishes the control structure of the ring coupling strategy, and proves its validity mathematically. The simulation results verify that the proposed strategy provides a fast response speed, high control precision, good disturbance rejection, and synchronization performance.
期刊介绍:
Measurement and Control publishes peer-reviewed practical and technical research and news pieces from both the science and engineering industry and academia. Whilst focusing more broadly on topics of relevance for practitioners in instrumentation and control, the journal also includes updates on both product and business announcements and information on technical advances.