{"title":"人工免疫网络在电子商务信用风险评估中的应用","authors":"Ruijuan Zhang","doi":"10.1007/s44196-023-00335-1","DOIUrl":null,"url":null,"abstract":"Abstract In order to improve the accuracy of e-commerce credit risk assessment, this paper suggests utilizing an artificial immune network to upgrade the text mining algorithm. Through this process, a new e-commerce risk assessment model reliant on the improved algorithm can be constructed with the intention of decreasing the likelihood of risk in digital transactions. The results show that the accuracy and loss rate of the improved clustering algorithm are 97.3% and 4.3%, respectively, both of which are better than the comparison algorithm. Then, the empirical analysis of the e-commerce credit risk assessment model proposed in the study shows that the average fitness and accuracy of the model after stability are 0.0022 and 95.63%, respectively, demonstrating superior performance compared to the comparison model. The above results show that the improved algorithm and the risk assessment model have good performance. Therefore, using this model to evaluate the credit risk of e-commerce can not only improve the accuracy of credit evaluation and promote the sustainable development of e-commerce. Furthermore, it can catalyze the adoption of innovative credit evaluation methods and promote the application of artificial intelligence technology in e-commerce.","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"88 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Application of Artificial Immune Network in E-Commerce Credit Risk Assessment\",\"authors\":\"Ruijuan Zhang\",\"doi\":\"10.1007/s44196-023-00335-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In order to improve the accuracy of e-commerce credit risk assessment, this paper suggests utilizing an artificial immune network to upgrade the text mining algorithm. Through this process, a new e-commerce risk assessment model reliant on the improved algorithm can be constructed with the intention of decreasing the likelihood of risk in digital transactions. The results show that the accuracy and loss rate of the improved clustering algorithm are 97.3% and 4.3%, respectively, both of which are better than the comparison algorithm. Then, the empirical analysis of the e-commerce credit risk assessment model proposed in the study shows that the average fitness and accuracy of the model after stability are 0.0022 and 95.63%, respectively, demonstrating superior performance compared to the comparison model. The above results show that the improved algorithm and the risk assessment model have good performance. Therefore, using this model to evaluate the credit risk of e-commerce can not only improve the accuracy of credit evaluation and promote the sustainable development of e-commerce. Furthermore, it can catalyze the adoption of innovative credit evaluation methods and promote the application of artificial intelligence technology in e-commerce.\",\"PeriodicalId\":54967,\"journal\":{\"name\":\"International Journal of Computational Intelligence Systems\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Intelligence Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44196-023-00335-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44196-023-00335-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Application of Artificial Immune Network in E-Commerce Credit Risk Assessment
Abstract In order to improve the accuracy of e-commerce credit risk assessment, this paper suggests utilizing an artificial immune network to upgrade the text mining algorithm. Through this process, a new e-commerce risk assessment model reliant on the improved algorithm can be constructed with the intention of decreasing the likelihood of risk in digital transactions. The results show that the accuracy and loss rate of the improved clustering algorithm are 97.3% and 4.3%, respectively, both of which are better than the comparison algorithm. Then, the empirical analysis of the e-commerce credit risk assessment model proposed in the study shows that the average fitness and accuracy of the model after stability are 0.0022 and 95.63%, respectively, demonstrating superior performance compared to the comparison model. The above results show that the improved algorithm and the risk assessment model have good performance. Therefore, using this model to evaluate the credit risk of e-commerce can not only improve the accuracy of credit evaluation and promote the sustainable development of e-commerce. Furthermore, it can catalyze the adoption of innovative credit evaluation methods and promote the application of artificial intelligence technology in e-commerce.
期刊介绍:
The International Journal of Computational Intelligence Systems publishes original research on all aspects of applied computational intelligence, especially targeting papers demonstrating the use of techniques and methods originating from computational intelligence theory. The core theories of computational intelligence are fuzzy logic, neural networks, evolutionary computation and probabilistic reasoning. The journal publishes only articles related to the use of computational intelligence and broadly covers the following topics:
-Autonomous reasoning-
Bio-informatics-
Cloud computing-
Condition monitoring-
Data science-
Data mining-
Data visualization-
Decision support systems-
Fault diagnosis-
Intelligent information retrieval-
Human-machine interaction and interfaces-
Image processing-
Internet and networks-
Noise analysis-
Pattern recognition-
Prediction systems-
Power (nuclear) safety systems-
Process and system control-
Real-time systems-
Risk analysis and safety-related issues-
Robotics-
Signal and image processing-
IoT and smart environments-
Systems integration-
System control-
System modelling and optimization-
Telecommunications-
Time series prediction-
Warning systems-
Virtual reality-
Web intelligence-
Deep learning