三角栅间距、栅宽和雷诺数对三角形栅上湍流通道次生流的影响

IF 2 3区 工程技术 Q3 MECHANICS
Oleksandr Zhdanov, Thomas O. Jelly, Angela Busse
{"title":"三角栅间距、栅宽和雷诺数对三角形栅上湍流通道次生流的影响","authors":"Oleksandr Zhdanov,&nbsp;Thomas O. Jelly,&nbsp;Angela Busse","doi":"10.1007/s10494-023-00488-1","DOIUrl":null,"url":null,"abstract":"<div><p>Most studies of secondary currents (SCs) over streamwise aligned ridges have been performed for rectangular ridge cross-sections. In this study, secondary currents above triangular ridges are systematically studied using direct numerical simulations of turbulent channel flow. The influence of ridge spacing on flow topology, mean flow, and turbulence statistics is investigated at two friction Reynolds numbers, 550 and 1000. In addition, the effects of ridge width on SCs, which have not previously been considered for this ridge shape, are explored. The influence of SCs on shear stress statistics increases with increased ridge spacing until SCs fill the entire channel. One of the primary findings is that, for ridge configurations with pronounced secondary currents, shear stress statistics exhibit clear Reynolds number sensitivity with a significant growth of dispersive shear stress levels with Reynolds number. In contrast to rectangular ridges, no above-ridge tertiary flows are observed for the tested range of ridge widths. Flow visualisations of SCs reveal the existence of corner vortices that form at the intersection of the lateral ridge sides and the smooth-wall sections. These are found to gradually disappear as ridges increase in width. Premultiplied spectra of streamwise velocity fluctuations show strong dependency on the spanwise sampling location. Whereas spanwise averaged spectra show no strong modifications by SCs, a significant increase of energy levels emerges at higher wavelengths for spectra sampled at the spanwise locations that correspond to the centres of the secondary currents.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"112 1","pages":"105 - 128"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-023-00488-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of Ridge Spacing, Ridge Width, and Reynolds Number on Secondary Currents in Turbulent Channel Flow Over Triangular Ridges\",\"authors\":\"Oleksandr Zhdanov,&nbsp;Thomas O. Jelly,&nbsp;Angela Busse\",\"doi\":\"10.1007/s10494-023-00488-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Most studies of secondary currents (SCs) over streamwise aligned ridges have been performed for rectangular ridge cross-sections. In this study, secondary currents above triangular ridges are systematically studied using direct numerical simulations of turbulent channel flow. The influence of ridge spacing on flow topology, mean flow, and turbulence statistics is investigated at two friction Reynolds numbers, 550 and 1000. In addition, the effects of ridge width on SCs, which have not previously been considered for this ridge shape, are explored. The influence of SCs on shear stress statistics increases with increased ridge spacing until SCs fill the entire channel. One of the primary findings is that, for ridge configurations with pronounced secondary currents, shear stress statistics exhibit clear Reynolds number sensitivity with a significant growth of dispersive shear stress levels with Reynolds number. In contrast to rectangular ridges, no above-ridge tertiary flows are observed for the tested range of ridge widths. Flow visualisations of SCs reveal the existence of corner vortices that form at the intersection of the lateral ridge sides and the smooth-wall sections. These are found to gradually disappear as ridges increase in width. Premultiplied spectra of streamwise velocity fluctuations show strong dependency on the spanwise sampling location. Whereas spanwise averaged spectra show no strong modifications by SCs, a significant increase of energy levels emerges at higher wavelengths for spectra sampled at the spanwise locations that correspond to the centres of the secondary currents.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"112 1\",\"pages\":\"105 - 128\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10494-023-00488-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-023-00488-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-023-00488-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

关于流向一致的山脊上的次级水流(SC)的大多数研究都是针对矩形山脊横截面进行的。本研究采用直接数值模拟湍流通道流的方法,系统地研究了三角脊上的次生流。在两种摩擦雷诺数(550 和 1000)条件下,研究了脊间距对流动拓扑、平均流和湍流统计的影响。此外,还探讨了脊宽对剪切力的影响,以前从未考虑过这种脊形。SC 对剪应力统计的影响随着脊间距的增加而增加,直到 SC 填满整个通道。主要发现之一是,对于具有明显次级流的海脊配置,剪应力统计对雷诺数具有明显的敏感性,分散剪应力水平随雷诺数的增加而显著增加。与矩形海脊相反,在测试的海脊宽度范围内,没有观察到海脊上方的三次流。SC 的流动可视化显示,在横向脊边和光滑壁部分的交汇处存在角涡流。这些旋涡会随着山脊宽度的增加而逐渐消失。流向速度波动的预乘法频谱显示出与跨度取样位置的强烈相关性。虽然跨向平均频谱没有显示出 SC 的强烈变化,但在与次级流中心相对应的跨向位置采样的频谱,在较高波长处出现了明显的能级增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of Ridge Spacing, Ridge Width, and Reynolds Number on Secondary Currents in Turbulent Channel Flow Over Triangular Ridges

Influence of Ridge Spacing, Ridge Width, and Reynolds Number on Secondary Currents in Turbulent Channel Flow Over Triangular Ridges

Most studies of secondary currents (SCs) over streamwise aligned ridges have been performed for rectangular ridge cross-sections. In this study, secondary currents above triangular ridges are systematically studied using direct numerical simulations of turbulent channel flow. The influence of ridge spacing on flow topology, mean flow, and turbulence statistics is investigated at two friction Reynolds numbers, 550 and 1000. In addition, the effects of ridge width on SCs, which have not previously been considered for this ridge shape, are explored. The influence of SCs on shear stress statistics increases with increased ridge spacing until SCs fill the entire channel. One of the primary findings is that, for ridge configurations with pronounced secondary currents, shear stress statistics exhibit clear Reynolds number sensitivity with a significant growth of dispersive shear stress levels with Reynolds number. In contrast to rectangular ridges, no above-ridge tertiary flows are observed for the tested range of ridge widths. Flow visualisations of SCs reveal the existence of corner vortices that form at the intersection of the lateral ridge sides and the smooth-wall sections. These are found to gradually disappear as ridges increase in width. Premultiplied spectra of streamwise velocity fluctuations show strong dependency on the spanwise sampling location. Whereas spanwise averaged spectra show no strong modifications by SCs, a significant increase of energy levels emerges at higher wavelengths for spectra sampled at the spanwise locations that correspond to the centres of the secondary currents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信