{"title":"从失误到里程碑:实用故障慢速检测之旅","authors":"Ruiming Lu, Erci Xu, Yiming Zhang, Fengyi Zhu, Zhaosheng Zhu, Mengtian Wang, Zongpeng Zhu, Guangtao Xue, Jiwu Shu, Minglu Li, Jiesheng Wu","doi":"10.1145/3617690","DOIUrl":null,"url":null,"abstract":"The newly emerging “fail-slow” failures plague both software and hardware where the victim components are still functioning yet with degraded performance. To address this problem, this article presents Perseus , a practical fail-slow detection framework for storage devices. Perseus leverages a light regression-based model to quickly pinpoint and analyze fail-slow failures at the granularity of drives. Within a 10-month close monitoring on 248K drives, Perseus managed to find 304 fail-slow cases. Isolating them can reduce the (node-level) 99.99th tail latency by 48%. We assemble a large-scale fail-slow dataset (including 41K normal drives and 315 verified fail-slow drives) from our production traces, based on which we provide root cause analysis on fail-slow drives covering a variety of ill-implemented scheduling, hardware defects, and environmental factors. We have released the dataset to the public for fail-slow study.","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"79 ","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Missteps to Milestones: A Journey to Practical Fail-Slow Detection\",\"authors\":\"Ruiming Lu, Erci Xu, Yiming Zhang, Fengyi Zhu, Zhaosheng Zhu, Mengtian Wang, Zongpeng Zhu, Guangtao Xue, Jiwu Shu, Minglu Li, Jiesheng Wu\",\"doi\":\"10.1145/3617690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The newly emerging “fail-slow” failures plague both software and hardware where the victim components are still functioning yet with degraded performance. To address this problem, this article presents Perseus , a practical fail-slow detection framework for storage devices. Perseus leverages a light regression-based model to quickly pinpoint and analyze fail-slow failures at the granularity of drives. Within a 10-month close monitoring on 248K drives, Perseus managed to find 304 fail-slow cases. Isolating them can reduce the (node-level) 99.99th tail latency by 48%. We assemble a large-scale fail-slow dataset (including 41K normal drives and 315 verified fail-slow drives) from our production traces, based on which we provide root cause analysis on fail-slow drives covering a variety of ill-implemented scheduling, hardware defects, and environmental factors. We have released the dataset to the public for fail-slow study.\",\"PeriodicalId\":49113,\"journal\":{\"name\":\"ACM Transactions on Storage\",\"volume\":\"79 \",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3617690\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3617690","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
From Missteps to Milestones: A Journey to Practical Fail-Slow Detection
The newly emerging “fail-slow” failures plague both software and hardware where the victim components are still functioning yet with degraded performance. To address this problem, this article presents Perseus , a practical fail-slow detection framework for storage devices. Perseus leverages a light regression-based model to quickly pinpoint and analyze fail-slow failures at the granularity of drives. Within a 10-month close monitoring on 248K drives, Perseus managed to find 304 fail-slow cases. Isolating them can reduce the (node-level) 99.99th tail latency by 48%. We assemble a large-scale fail-slow dataset (including 41K normal drives and 315 verified fail-slow drives) from our production traces, based on which we provide root cause analysis on fail-slow drives covering a variety of ill-implemented scheduling, hardware defects, and environmental factors. We have released the dataset to the public for fail-slow study.
期刊介绍:
The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.