OptGate:一种设计和分析传统和自补偿门控管道系统性能的新工具

Ahmed A. Abdelmoneim, Andre Daccache, Roula Khadra
{"title":"OptGate:一种设计和分析传统和自补偿门控管道系统性能的新工具","authors":"Ahmed A. Abdelmoneim, Andre Daccache, Roula Khadra","doi":"10.1061/jidedh.ireng-10100","DOIUrl":null,"url":null,"abstract":"Surface irrigation is still by far the most common method adopted worldwide. For many developing countries, shifting to modern pressurized irrigation is hampered by system and energy costs. Gated pipes are an improvement on furrow irrigation. They offer an affordable modernization option for traditional surface systems. Designed to operate at low pressure, gated pipes have the potential to reduce conveyance losses, improve application uniformity, and minimize runoff, which is often responsible for spreading waterborne diseases and lowering water quality. However, very little pertinent data are available on their performance. In this paper, a new model (OptGate) for the design and performance analysis of self-compensated (SC) and conventional rectangular (CG) gated pipes is described and field validated. OptGate proved its reliability in simulating the discharges along the gated pipe with RMSE = 0.29 and 0.119 m3/h for CG and SC, respectively, under a range of streaming head pressures ranging from 2 to 10 m with a 2-m step. The proposed model can provide users with the ability to predict system performance under different pressures, spacings, gate shapes and behaviors, pipe diameters, and land topography scenarios.","PeriodicalId":16260,"journal":{"name":"Journal of Irrigation and Drainage Engineering-asce","volume":"109 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OptGate: A New Tool to Design and Analyze the Performance of Conventional and Self-Compensating Gated Pipe Systems\",\"authors\":\"Ahmed A. Abdelmoneim, Andre Daccache, Roula Khadra\",\"doi\":\"10.1061/jidedh.ireng-10100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface irrigation is still by far the most common method adopted worldwide. For many developing countries, shifting to modern pressurized irrigation is hampered by system and energy costs. Gated pipes are an improvement on furrow irrigation. They offer an affordable modernization option for traditional surface systems. Designed to operate at low pressure, gated pipes have the potential to reduce conveyance losses, improve application uniformity, and minimize runoff, which is often responsible for spreading waterborne diseases and lowering water quality. However, very little pertinent data are available on their performance. In this paper, a new model (OptGate) for the design and performance analysis of self-compensated (SC) and conventional rectangular (CG) gated pipes is described and field validated. OptGate proved its reliability in simulating the discharges along the gated pipe with RMSE = 0.29 and 0.119 m3/h for CG and SC, respectively, under a range of streaming head pressures ranging from 2 to 10 m with a 2-m step. The proposed model can provide users with the ability to predict system performance under different pressures, spacings, gate shapes and behaviors, pipe diameters, and land topography scenarios.\",\"PeriodicalId\":16260,\"journal\":{\"name\":\"Journal of Irrigation and Drainage Engineering-asce\",\"volume\":\"109 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Irrigation and Drainage Engineering-asce\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1061/jidedh.ireng-10100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Irrigation and Drainage Engineering-asce","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/jidedh.ireng-10100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

到目前为止,地表灌溉仍然是世界上最常用的灌溉方法。对许多发展中国家来说,转向现代加压灌溉受到系统和能源成本的阻碍。门控管是对沟灌的一种改进。它们为传统的地面系统提供了一种经济实惠的现代化选择。门控管道设计用于在低压下运行,具有减少输送损失、提高应用均匀性和减少径流的潜力,而径流通常是传播水传播疾病和降低水质的原因。然而,关于它们的性能的相关数据很少。本文介绍了一种用于自补偿(SC)和常规矩形(CG)门控管设计和性能分析的新模型(OptGate),并进行了现场验证。OptGate在流量水头压力范围为2 ~ 10 m,步长为2 m的情况下,模拟了CG和SC沿门控管道的流量,RMSE分别为0.29和0.119 m3/h,证明了其可靠性。所提出的模型可以为用户提供在不同压力、间距、闸门形状和行为、管径和地形情况下预测系统性能的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OptGate: A New Tool to Design and Analyze the Performance of Conventional and Self-Compensating Gated Pipe Systems
Surface irrigation is still by far the most common method adopted worldwide. For many developing countries, shifting to modern pressurized irrigation is hampered by system and energy costs. Gated pipes are an improvement on furrow irrigation. They offer an affordable modernization option for traditional surface systems. Designed to operate at low pressure, gated pipes have the potential to reduce conveyance losses, improve application uniformity, and minimize runoff, which is often responsible for spreading waterborne diseases and lowering water quality. However, very little pertinent data are available on their performance. In this paper, a new model (OptGate) for the design and performance analysis of self-compensated (SC) and conventional rectangular (CG) gated pipes is described and field validated. OptGate proved its reliability in simulating the discharges along the gated pipe with RMSE = 0.29 and 0.119 m3/h for CG and SC, respectively, under a range of streaming head pressures ranging from 2 to 10 m with a 2-m step. The proposed model can provide users with the ability to predict system performance under different pressures, spacings, gate shapes and behaviors, pipe diameters, and land topography scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信