基于低复杂度bfgs的海量MIMO上行软输出MMSE检测器

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Lin Li, Jianhao Hu
{"title":"基于低复杂度bfgs的海量MIMO上行软输出MMSE检测器","authors":"Lin Li, Jianhao Hu","doi":"10.1049/2023/8887060","DOIUrl":null,"url":null,"abstract":"For the massive multiple-input multiple-output (MIMO) uplink, the linear minimum mean square error (MMSE) detector is near-optimal but involves undesirable matrix inversion. In this paper, we propose a low-complexity soft-output detector based on the simplified Broyden–Fletcher–Goldfarb–Shanno method to realize the matrix-inversion-free MMSE detection iteratively. To accelerate convergence with minimal computational overhead, an appropriate initial solution is presented leveraging the channel-hardening property of massive MIMO. Moreover, we employ a low-complexity approximated approach to calculating the log-likelihood ratios with negligible performance losses. Simulation results finally verify that the proposed detector can achieve the near-MMSE performance with a few iterations and outperforms the recently reported linear detectors in terms of lower complexity and faster convergence for the realistic massive MIMO systems.","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Complexity BFGS-Based Soft-Output MMSE Detector for Massive MIMO Uplink\",\"authors\":\"Lin Li, Jianhao Hu\",\"doi\":\"10.1049/2023/8887060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the massive multiple-input multiple-output (MIMO) uplink, the linear minimum mean square error (MMSE) detector is near-optimal but involves undesirable matrix inversion. In this paper, we propose a low-complexity soft-output detector based on the simplified Broyden–Fletcher–Goldfarb–Shanno method to realize the matrix-inversion-free MMSE detection iteratively. To accelerate convergence with minimal computational overhead, an appropriate initial solution is presented leveraging the channel-hardening property of massive MIMO. Moreover, we employ a low-complexity approximated approach to calculating the log-likelihood ratios with negligible performance losses. Simulation results finally verify that the proposed detector can achieve the near-MMSE performance with a few iterations and outperforms the recently reported linear detectors in terms of lower complexity and faster convergence for the realistic massive MIMO systems.\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/2023/8887060\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/8887060","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对于大规模多输入多输出(MIMO)上行链路,线性最小均方误差(MMSE)检测器接近最优,但涉及不良的矩阵反演。本文提出了一种基于简化Broyden-Fletcher-Goldfarb-Shanno方法的低复杂度软输出检测器,迭代实现无矩阵逆的MMSE检测。为了以最小的计算开销加速收敛,利用大规模MIMO的信道硬化特性,提出了一个合适的初始解。此外,我们采用了一种低复杂度的近似方法来计算具有可忽略性能损失的对数似然比。仿真结果表明,该检测器只需几次迭代即可达到接近mmse的性能,并且在较低的复杂度和更快的收敛速度方面优于最近报道的线性检测器,适用于实际的大规模MIMO系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Complexity BFGS-Based Soft-Output MMSE Detector for Massive MIMO Uplink
For the massive multiple-input multiple-output (MIMO) uplink, the linear minimum mean square error (MMSE) detector is near-optimal but involves undesirable matrix inversion. In this paper, we propose a low-complexity soft-output detector based on the simplified Broyden–Fletcher–Goldfarb–Shanno method to realize the matrix-inversion-free MMSE detection iteratively. To accelerate convergence with minimal computational overhead, an appropriate initial solution is presented leveraging the channel-hardening property of massive MIMO. Moreover, we employ a low-complexity approximated approach to calculating the log-likelihood ratios with negligible performance losses. Simulation results finally verify that the proposed detector can achieve the near-MMSE performance with a few iterations and outperforms the recently reported linear detectors in terms of lower complexity and faster convergence for the realistic massive MIMO systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Signal Processing
IET Signal Processing 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.90%
发文量
83
审稿时长
9.5 months
期刊介绍: IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more. Topics covered by scope include, but are not limited to: advances in single and multi-dimensional filter design and implementation linear and nonlinear, fixed and adaptive digital filters and multirate filter banks statistical signal processing techniques and analysis classical, parametric and higher order spectral analysis signal transformation and compression techniques, including time-frequency analysis system modelling and adaptive identification techniques machine learning based approaches to signal processing Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques theory and application of blind and semi-blind signal separation techniques signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals direction-finding and beamforming techniques for audio and electromagnetic signals analysis techniques for biomedical signals baseband signal processing techniques for transmission and reception of communication signals signal processing techniques for data hiding and audio watermarking sparse signal processing and compressive sensing Special Issue Call for Papers: Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信