{"title":"由增生算子生成的Cauchy问题的计算性质","authors":"Pedro Pinto, Nicholas Pischke","doi":"10.4171/dm/924","DOIUrl":null,"url":null,"abstract":"In this paper, we provide quantitative versions of results on the asymptotic behavior of nonlinear semigroups generated by an accretive operator due to O. Nevanlinna and S. Reich as well as H.-K. Xu. These results themselves rely on a particular assumption on the underlying operator introduced by A. Pazy under the name of `convergence condition'. Based on logical techniques from `proof mining', a subdiscipline of mathematical logic, we derive various notions of a `convergence condition with modulus' which provide quantitative information on this condition in different ways. These techniques then also facilitate the extraction of quantitative information on the convergence results of Nevanlinna and Reich as well as Xu, in particular also in the form of rates of convergence which depend on these moduli for the convergence condition.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"1 4","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On computational properties of Cauchy problems generated by accretive operators\",\"authors\":\"Pedro Pinto, Nicholas Pischke\",\"doi\":\"10.4171/dm/924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide quantitative versions of results on the asymptotic behavior of nonlinear semigroups generated by an accretive operator due to O. Nevanlinna and S. Reich as well as H.-K. Xu. These results themselves rely on a particular assumption on the underlying operator introduced by A. Pazy under the name of `convergence condition'. Based on logical techniques from `proof mining', a subdiscipline of mathematical logic, we derive various notions of a `convergence condition with modulus' which provide quantitative information on this condition in different ways. These techniques then also facilitate the extraction of quantitative information on the convergence results of Nevanlinna and Reich as well as Xu, in particular also in the form of rates of convergence which depend on these moduli for the convergence condition.\",\"PeriodicalId\":50567,\"journal\":{\"name\":\"Documenta Mathematica\",\"volume\":\"1 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Documenta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/dm/924\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/dm/924","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On computational properties of Cauchy problems generated by accretive operators
In this paper, we provide quantitative versions of results on the asymptotic behavior of nonlinear semigroups generated by an accretive operator due to O. Nevanlinna and S. Reich as well as H.-K. Xu. These results themselves rely on a particular assumption on the underlying operator introduced by A. Pazy under the name of `convergence condition'. Based on logical techniques from `proof mining', a subdiscipline of mathematical logic, we derive various notions of a `convergence condition with modulus' which provide quantitative information on this condition in different ways. These techniques then also facilitate the extraction of quantitative information on the convergence results of Nevanlinna and Reich as well as Xu, in particular also in the form of rates of convergence which depend on these moduli for the convergence condition.
期刊介绍:
DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented
Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.