多瑙河沿岸的月流温度:具有增量气候变化情景的统计分析和预测模型

IF 2.4 4区 环境科学与生态学 Q3 WATER RESOURCES
Pavla Pekárová, Zbyněk Bajtek, Ján Pekár, Roman Výleta, Ognjen Bonacci, Pavol Miklánek, Jörg Uwe Belz, Liudmyla Gorbatchova
{"title":"多瑙河沿岸的月流温度:具有增量气候变化情景的统计分析和预测模型","authors":"Pavla Pekárová, Zbyněk Bajtek, Ján Pekár, Roman Výleta, Ognjen Bonacci, Pavol Miklánek, Jörg Uwe Belz, Liudmyla Gorbatchova","doi":"10.2478/johh-2023-0028","DOIUrl":null,"url":null,"abstract":"Abstract The aim of the study is to analyse changes and predict the course of mean monthly water temperatures of the Danube River at various locations for the future. The first part of the study involves conducting a statistical analysis of the annual and monthly average air temperatures, water temperatures, and discharges along the Danube River. The study examines long-term trends, changes in the trends, and multiannual variability in the time series. The second part of the study focuses on simulating the average monthly water temperatures using Seasonal Autoregressive Integrated Moving Average (SARIMA) models and nonlinear regression models (NonL), based on two RCP based incremental mean monthly air temperature scenarios. To assess the impact of future climate on stream temperatures, the historical long-term average of the monthly water temperature (1990–2020) was compared with scenarios S1 (2041–2070) and S2 (2071–2100). The simulation results from the two stochastic models, the SARIMA and NonL, showed that in scenario S1, the Danube River’s average monthly water temperature is projected to increase by 0.81/0.82°C (Passau), 0.55/0.71°C (Bratislava), and 0.68/0.56°C (Reni). In scenario S2, the models predict higher increases: 2.83/2.50°C (Passau), 2.06/2.46°C (Bratislava), and 2.52/1.90°C (Reni). Overall, the SARIMA model proved to be more stable and effective in simulating the increase in monthly water temperatures in the Danube River.","PeriodicalId":50183,"journal":{"name":"Journal Of Hydrology And Hydromechanics","volume":"3 6","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monthly stream temperatures along the Danube River: Statistical analysis and predictive modelling with incremental climate change scenarios\",\"authors\":\"Pavla Pekárová, Zbyněk Bajtek, Ján Pekár, Roman Výleta, Ognjen Bonacci, Pavol Miklánek, Jörg Uwe Belz, Liudmyla Gorbatchova\",\"doi\":\"10.2478/johh-2023-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of the study is to analyse changes and predict the course of mean monthly water temperatures of the Danube River at various locations for the future. The first part of the study involves conducting a statistical analysis of the annual and monthly average air temperatures, water temperatures, and discharges along the Danube River. The study examines long-term trends, changes in the trends, and multiannual variability in the time series. The second part of the study focuses on simulating the average monthly water temperatures using Seasonal Autoregressive Integrated Moving Average (SARIMA) models and nonlinear regression models (NonL), based on two RCP based incremental mean monthly air temperature scenarios. To assess the impact of future climate on stream temperatures, the historical long-term average of the monthly water temperature (1990–2020) was compared with scenarios S1 (2041–2070) and S2 (2071–2100). The simulation results from the two stochastic models, the SARIMA and NonL, showed that in scenario S1, the Danube River’s average monthly water temperature is projected to increase by 0.81/0.82°C (Passau), 0.55/0.71°C (Bratislava), and 0.68/0.56°C (Reni). In scenario S2, the models predict higher increases: 2.83/2.50°C (Passau), 2.06/2.46°C (Bratislava), and 2.52/1.90°C (Reni). Overall, the SARIMA model proved to be more stable and effective in simulating the increase in monthly water temperatures in the Danube River.\",\"PeriodicalId\":50183,\"journal\":{\"name\":\"Journal Of Hydrology And Hydromechanics\",\"volume\":\"3 6\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal Of Hydrology And Hydromechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/johh-2023-0028\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal Of Hydrology And Hydromechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/johh-2023-0028","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本研究的目的是分析多瑙河在不同地点的月平均水温的变化和预测未来的过程。研究的第一部分包括对多瑙河沿岸的年和月平均气温、水温和排放量进行统计分析。该研究考察了长期趋势、趋势变化以及时间序列中的多年变率。研究的第二部分着重于利用季节自回归综合移动平均(SARIMA)模型和非线性回归模型(NonL)模拟两种基于RCP的月平均气温增量情景下的月平均水温。为了评估未来气候对河流温度的影响,将1990-2020年月水温的历史长期平均值与情景S1(2041-2070)和情景S2(2071-2100)进行了比较。SARIMA和NonL两个随机模式的模拟结果表明,在情景S1下,多瑙河月平均水温将分别升高0.81/0.82°C (Passau)、0.55/0.71°C (Bratislava)和0.68/0.56°C (Reni)。在情景S2中,模型预测的升温更高:2.83/2.50°C (Passau)、2.06/2.46°C (Bratislava)和2.52/1.90°C (Reni)。总体而言,SARIMA模型在模拟多瑙河月水温上升方面更为稳定和有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monthly stream temperatures along the Danube River: Statistical analysis and predictive modelling with incremental climate change scenarios
Abstract The aim of the study is to analyse changes and predict the course of mean monthly water temperatures of the Danube River at various locations for the future. The first part of the study involves conducting a statistical analysis of the annual and monthly average air temperatures, water temperatures, and discharges along the Danube River. The study examines long-term trends, changes in the trends, and multiannual variability in the time series. The second part of the study focuses on simulating the average monthly water temperatures using Seasonal Autoregressive Integrated Moving Average (SARIMA) models and nonlinear regression models (NonL), based on two RCP based incremental mean monthly air temperature scenarios. To assess the impact of future climate on stream temperatures, the historical long-term average of the monthly water temperature (1990–2020) was compared with scenarios S1 (2041–2070) and S2 (2071–2100). The simulation results from the two stochastic models, the SARIMA and NonL, showed that in scenario S1, the Danube River’s average monthly water temperature is projected to increase by 0.81/0.82°C (Passau), 0.55/0.71°C (Bratislava), and 0.68/0.56°C (Reni). In scenario S2, the models predict higher increases: 2.83/2.50°C (Passau), 2.06/2.46°C (Bratislava), and 2.52/1.90°C (Reni). Overall, the SARIMA model proved to be more stable and effective in simulating the increase in monthly water temperatures in the Danube River.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
5.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: JOURNAL OF HYDROLOGY AND HYDROMECHANICS is an international open access journal for the basic disciplines of water sciences. The scope of hydrology is limited to biohydrology, catchment hydrology and vadose zone hydrology, primarily of temperate zone. The hydromechanics covers theoretical, experimental and computational hydraulics and fluid mechanics in various fields, two- and multiphase flows, including non-Newtonian flow, and new frontiers in hydraulics. The journal is published quarterly in English. The types of contribution include: research and review articles, short communications and technical notes. The articles have been thoroughly peer reviewed by international specialists and promoted to researchers working in the same field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信