抛物矢量束的Seshadri常数

IF 0.9 3区 数学 Q2 MATHEMATICS
Indranil Biswas, Krishna Hanumanthu, Snehajit Misra, Nabanita Ray
{"title":"抛物矢量束的Seshadri常数","authors":"Indranil Biswas, Krishna Hanumanthu, Snehajit Misra, Nabanita Ray","doi":"10.4171/dm/917","DOIUrl":null,"url":null,"abstract":"Let $X$ be a complex projective variety, and let $E_{\\ast}$ be a parabolic vector bundle on $X$. We introduce the notion of \\textit{parabolic Seshadri constants} of $E_{\\ast}$. It is shown that these constants are analogous to the classical Seshadri constants of vector bundles, in particular, they have parallel definitions and properties. We prove a Seshadri criterion for parabolic ampleness of $E_{\\ast}$ in terms of parabolic Seshadri constants. We also compute parabolic Seshadri constants for symmetric powers and tensor products of parabolic vector bundles.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"121 6","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seshadri constants of parabolic vector bundles\",\"authors\":\"Indranil Biswas, Krishna Hanumanthu, Snehajit Misra, Nabanita Ray\",\"doi\":\"10.4171/dm/917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a complex projective variety, and let $E_{\\\\ast}$ be a parabolic vector bundle on $X$. We introduce the notion of \\\\textit{parabolic Seshadri constants} of $E_{\\\\ast}$. It is shown that these constants are analogous to the classical Seshadri constants of vector bundles, in particular, they have parallel definitions and properties. We prove a Seshadri criterion for parabolic ampleness of $E_{\\\\ast}$ in terms of parabolic Seshadri constants. We also compute parabolic Seshadri constants for symmetric powers and tensor products of parabolic vector bundles.\",\"PeriodicalId\":50567,\"journal\":{\"name\":\"Documenta Mathematica\",\"volume\":\"121 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Documenta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/dm/917\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/dm/917","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seshadri constants of parabolic vector bundles
Let $X$ be a complex projective variety, and let $E_{\ast}$ be a parabolic vector bundle on $X$. We introduce the notion of \textit{parabolic Seshadri constants} of $E_{\ast}$. It is shown that these constants are analogous to the classical Seshadri constants of vector bundles, in particular, they have parallel definitions and properties. We prove a Seshadri criterion for parabolic ampleness of $E_{\ast}$ in terms of parabolic Seshadri constants. We also compute parabolic Seshadri constants for symmetric powers and tensor products of parabolic vector bundles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Documenta Mathematica
Documenta Mathematica 数学-数学
CiteScore
1.60
自引率
11.10%
发文量
0
审稿时长
>12 weeks
期刊介绍: DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信