无大二部孔图中的生成树

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Jie Han, Jie Hu, Lidan Ping, Guanghui Wang, Yi Wang, Donglei Yang
{"title":"无大二部孔图中的生成树","authors":"Jie Han, Jie Hu, Lidan Ping, Guanghui Wang, Yi Wang, Donglei Yang","doi":"10.1017/s0963548323000378","DOIUrl":null,"url":null,"abstract":"Abstract We show that for any $\\varepsilon \\gt 0$ and $\\Delta \\in \\mathbb{N}$ , there exists $\\alpha \\gt 0$ such that for sufficiently large $n$ , every $n$ -vertex graph $G$ satisfying that $\\delta (G)\\geq \\varepsilon n$ and $e(X, Y)\\gt 0$ for every pair of disjoint vertex sets $X, Y\\subseteq V(G)$ of size $\\alpha n$ contains all spanning trees with maximum degree at most $\\Delta$ . This strengthens a result of Böttcher, Han, Kohayakawa, Montgomery, Parczyk, and Person.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":"11 16","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spanning trees in graphs without large bipartite holes\",\"authors\":\"Jie Han, Jie Hu, Lidan Ping, Guanghui Wang, Yi Wang, Donglei Yang\",\"doi\":\"10.1017/s0963548323000378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show that for any $\\\\varepsilon \\\\gt 0$ and $\\\\Delta \\\\in \\\\mathbb{N}$ , there exists $\\\\alpha \\\\gt 0$ such that for sufficiently large $n$ , every $n$ -vertex graph $G$ satisfying that $\\\\delta (G)\\\\geq \\\\varepsilon n$ and $e(X, Y)\\\\gt 0$ for every pair of disjoint vertex sets $X, Y\\\\subseteq V(G)$ of size $\\\\alpha n$ contains all spanning trees with maximum degree at most $\\\\Delta$ . This strengthens a result of Böttcher, Han, Kohayakawa, Montgomery, Parczyk, and Person.\",\"PeriodicalId\":10513,\"journal\":{\"name\":\"Combinatorics, Probability & Computing\",\"volume\":\"11 16\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability & Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548323000378\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000378","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们证明了对于任意$\varepsilon \gt 0$和$\Delta \in \mathbb{N}$,存在这样的$\alpha \gt 0$,对于足够大的$n$,每一个$n$ -顶点图$G$满足$\delta (G)\geq \varepsilon n$和$e(X, Y)\gt 0$对于每一对大小为$\alpha n$的不相交顶点集$X, Y\subseteq V(G)$包含所有最大度的生成树$\Delta$。这加强了Böttcher、Han、Kohayakawa、Montgomery、Parczyk和Person的研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spanning trees in graphs without large bipartite holes
Abstract We show that for any $\varepsilon \gt 0$ and $\Delta \in \mathbb{N}$ , there exists $\alpha \gt 0$ such that for sufficiently large $n$ , every $n$ -vertex graph $G$ satisfying that $\delta (G)\geq \varepsilon n$ and $e(X, Y)\gt 0$ for every pair of disjoint vertex sets $X, Y\subseteq V(G)$ of size $\alpha n$ contains all spanning trees with maximum degree at most $\Delta$ . This strengthens a result of Böttcher, Han, Kohayakawa, Montgomery, Parczyk, and Person.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信