Jie Han, Jie Hu, Lidan Ping, Guanghui Wang, Yi Wang, Donglei Yang
{"title":"无大二部孔图中的生成树","authors":"Jie Han, Jie Hu, Lidan Ping, Guanghui Wang, Yi Wang, Donglei Yang","doi":"10.1017/s0963548323000378","DOIUrl":null,"url":null,"abstract":"Abstract We show that for any $\\varepsilon \\gt 0$ and $\\Delta \\in \\mathbb{N}$ , there exists $\\alpha \\gt 0$ such that for sufficiently large $n$ , every $n$ -vertex graph $G$ satisfying that $\\delta (G)\\geq \\varepsilon n$ and $e(X, Y)\\gt 0$ for every pair of disjoint vertex sets $X, Y\\subseteq V(G)$ of size $\\alpha n$ contains all spanning trees with maximum degree at most $\\Delta$ . This strengthens a result of Böttcher, Han, Kohayakawa, Montgomery, Parczyk, and Person.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":"11 16","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spanning trees in graphs without large bipartite holes\",\"authors\":\"Jie Han, Jie Hu, Lidan Ping, Guanghui Wang, Yi Wang, Donglei Yang\",\"doi\":\"10.1017/s0963548323000378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show that for any $\\\\varepsilon \\\\gt 0$ and $\\\\Delta \\\\in \\\\mathbb{N}$ , there exists $\\\\alpha \\\\gt 0$ such that for sufficiently large $n$ , every $n$ -vertex graph $G$ satisfying that $\\\\delta (G)\\\\geq \\\\varepsilon n$ and $e(X, Y)\\\\gt 0$ for every pair of disjoint vertex sets $X, Y\\\\subseteq V(G)$ of size $\\\\alpha n$ contains all spanning trees with maximum degree at most $\\\\Delta$ . This strengthens a result of Böttcher, Han, Kohayakawa, Montgomery, Parczyk, and Person.\",\"PeriodicalId\":10513,\"journal\":{\"name\":\"Combinatorics, Probability & Computing\",\"volume\":\"11 16\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability & Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548323000378\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000378","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Spanning trees in graphs without large bipartite holes
Abstract We show that for any $\varepsilon \gt 0$ and $\Delta \in \mathbb{N}$ , there exists $\alpha \gt 0$ such that for sufficiently large $n$ , every $n$ -vertex graph $G$ satisfying that $\delta (G)\geq \varepsilon n$ and $e(X, Y)\gt 0$ for every pair of disjoint vertex sets $X, Y\subseteq V(G)$ of size $\alpha n$ contains all spanning trees with maximum degree at most $\Delta$ . This strengthens a result of Böttcher, Han, Kohayakawa, Montgomery, Parczyk, and Person.
期刊介绍:
Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.