Abdulbasit M. A. Sabaawi, Mohammed R. Almasaoodi, Sara El Gaily, Sándor Imre
{"title":"利用新型量子遗传算法优化 5G 应用中大规模多输入多输出网络的能效","authors":"Abdulbasit M. A. Sabaawi, Mohammed R. Almasaoodi, Sara El Gaily, Sándor Imre","doi":"10.1049/ntw2.12104","DOIUrl":null,"url":null,"abstract":"<p>Devising efficient optimisation methods has been a subject of great research attention since current evolving trends in communication networks, machine learning, and other cutting-edge systems that need a fast and accurate optimised computational model. Classical computers became incapable of handling new optimisation problems posed by newly emerging trends. Quantum optimisation algorithms appear as alternative solutions. The existing bottleneck that restricts the use of the newly developed quantum strategies is the limited qubit size of the available quantum computers (the size of the most recent universal quantum computer is 433 qubits). A new quantum genetic algorithm (QGA) is proposed that handles the presented problem. A quantum extreme value searching algorithm and quantum blind computing framework are utilised to extend the search capabilities of the GA. The quantum genetic strategy is exploited to maximise energy efficiency at full spectral efficiency of massive multiple-input, multiple-output (M-MIMO) technology as a toy example for pointing out the efficiency of the presented quantum strategy. The authors run extensive simulations and prove how the presented quantum method outperforms the existing classical genetic algorithm.</p>","PeriodicalId":46240,"journal":{"name":"IET Networks","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ntw2.12104","citationCount":"0","resultStr":"{\"title\":\"Energy efficiency optimisation in massive multiple-input, multiple-output network for 5G applications using new quantum genetic algorithm\",\"authors\":\"Abdulbasit M. A. Sabaawi, Mohammed R. Almasaoodi, Sara El Gaily, Sándor Imre\",\"doi\":\"10.1049/ntw2.12104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Devising efficient optimisation methods has been a subject of great research attention since current evolving trends in communication networks, machine learning, and other cutting-edge systems that need a fast and accurate optimised computational model. Classical computers became incapable of handling new optimisation problems posed by newly emerging trends. Quantum optimisation algorithms appear as alternative solutions. The existing bottleneck that restricts the use of the newly developed quantum strategies is the limited qubit size of the available quantum computers (the size of the most recent universal quantum computer is 433 qubits). A new quantum genetic algorithm (QGA) is proposed that handles the presented problem. A quantum extreme value searching algorithm and quantum blind computing framework are utilised to extend the search capabilities of the GA. The quantum genetic strategy is exploited to maximise energy efficiency at full spectral efficiency of massive multiple-input, multiple-output (M-MIMO) technology as a toy example for pointing out the efficiency of the presented quantum strategy. The authors run extensive simulations and prove how the presented quantum method outperforms the existing classical genetic algorithm.</p>\",\"PeriodicalId\":46240,\"journal\":{\"name\":\"IET Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ntw2.12104\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ntw2.12104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Networks","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ntw2.12104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Energy efficiency optimisation in massive multiple-input, multiple-output network for 5G applications using new quantum genetic algorithm
Devising efficient optimisation methods has been a subject of great research attention since current evolving trends in communication networks, machine learning, and other cutting-edge systems that need a fast and accurate optimised computational model. Classical computers became incapable of handling new optimisation problems posed by newly emerging trends. Quantum optimisation algorithms appear as alternative solutions. The existing bottleneck that restricts the use of the newly developed quantum strategies is the limited qubit size of the available quantum computers (the size of the most recent universal quantum computer is 433 qubits). A new quantum genetic algorithm (QGA) is proposed that handles the presented problem. A quantum extreme value searching algorithm and quantum blind computing framework are utilised to extend the search capabilities of the GA. The quantum genetic strategy is exploited to maximise energy efficiency at full spectral efficiency of massive multiple-input, multiple-output (M-MIMO) technology as a toy example for pointing out the efficiency of the presented quantum strategy. The authors run extensive simulations and prove how the presented quantum method outperforms the existing classical genetic algorithm.
IET NetworksCOMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
5.00
自引率
0.00%
发文量
41
审稿时长
33 weeks
期刊介绍:
IET Networks covers the fundamental developments and advancing methodologies to achieve higher performance, optimized and dependable future networks. IET Networks is particularly interested in new ideas and superior solutions to the known and arising technological development bottlenecks at all levels of networking such as topologies, protocols, routing, relaying and resource-allocation for more efficient and more reliable provision of network services. Topics include, but are not limited to: Network Architecture, Design and Planning, Network Protocol, Software, Analysis, Simulation and Experiment, Network Technologies, Applications and Services, Network Security, Operation and Management.