{"title":"采用基于风险的集中力算法制定优化方案以提高灌溉效率","authors":"Juming Jiang, Shi Chen","doi":"10.2166/ws.2023.303","DOIUrl":null,"url":null,"abstract":"Abstract Losses in surface irrigation include deep percolation and runoff, which is one of the ways to increase the efficiency of furrow irrigation, using a closed-end mode in irrigation systems. This research was conducted to evaluate the effects of geometrical variables (slope and length of furrow) and flow control (inflow rate and cut-off time) on application efficiency (AE) and the uniformity of water distribution in a closed-end furrow irrigation system. The length, slope, inflow rate, and cut-off time are considered as the decision-making variables for developing the multi-objective genetic algorithm based on the non-dominated sorting. For this purpose, three irrigation furrows with the closed-end system were considered. The optimization algorithm for calculating the objective functions involves maximizing the minimum water depth and minimizing the infiltration depth in a modeling loop. The optimization algorithm was linked to the WinSRFR software to calculate the objective functions. The results showed that the best combination of inflow rate and the cut-off time for 75 mm of required water depth was 1.9 l/s/m and 150 min, respectively, which increased AE and distribution uniformity to 79 and 78%. Furthermore, the AE in the closed-end furrow irrigation system is higher (30–50%) than the open-end method in different scenarios.","PeriodicalId":23573,"journal":{"name":"Water Science & Technology: Water Supply","volume":"36 30","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing an optimal plan to improve irrigation efficiency using a risk-based central force algorithm\",\"authors\":\"Juming Jiang, Shi Chen\",\"doi\":\"10.2166/ws.2023.303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Losses in surface irrigation include deep percolation and runoff, which is one of the ways to increase the efficiency of furrow irrigation, using a closed-end mode in irrigation systems. This research was conducted to evaluate the effects of geometrical variables (slope and length of furrow) and flow control (inflow rate and cut-off time) on application efficiency (AE) and the uniformity of water distribution in a closed-end furrow irrigation system. The length, slope, inflow rate, and cut-off time are considered as the decision-making variables for developing the multi-objective genetic algorithm based on the non-dominated sorting. For this purpose, three irrigation furrows with the closed-end system were considered. The optimization algorithm for calculating the objective functions involves maximizing the minimum water depth and minimizing the infiltration depth in a modeling loop. The optimization algorithm was linked to the WinSRFR software to calculate the objective functions. The results showed that the best combination of inflow rate and the cut-off time for 75 mm of required water depth was 1.9 l/s/m and 150 min, respectively, which increased AE and distribution uniformity to 79 and 78%. Furthermore, the AE in the closed-end furrow irrigation system is higher (30–50%) than the open-end method in different scenarios.\",\"PeriodicalId\":23573,\"journal\":{\"name\":\"Water Science & Technology: Water Supply\",\"volume\":\"36 30\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science & Technology: Water Supply\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/ws.2023.303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology: Water Supply","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Developing an optimal plan to improve irrigation efficiency using a risk-based central force algorithm
Abstract Losses in surface irrigation include deep percolation and runoff, which is one of the ways to increase the efficiency of furrow irrigation, using a closed-end mode in irrigation systems. This research was conducted to evaluate the effects of geometrical variables (slope and length of furrow) and flow control (inflow rate and cut-off time) on application efficiency (AE) and the uniformity of water distribution in a closed-end furrow irrigation system. The length, slope, inflow rate, and cut-off time are considered as the decision-making variables for developing the multi-objective genetic algorithm based on the non-dominated sorting. For this purpose, three irrigation furrows with the closed-end system were considered. The optimization algorithm for calculating the objective functions involves maximizing the minimum water depth and minimizing the infiltration depth in a modeling loop. The optimization algorithm was linked to the WinSRFR software to calculate the objective functions. The results showed that the best combination of inflow rate and the cut-off time for 75 mm of required water depth was 1.9 l/s/m and 150 min, respectively, which increased AE and distribution uniformity to 79 and 78%. Furthermore, the AE in the closed-end furrow irrigation system is higher (30–50%) than the open-end method in different scenarios.