{"title":"杂质对离子温度梯度驱动湍流输运影响的陀螺-朗道流体模拟","authors":"Yifei Liu, Jiquan Li","doi":"10.1088/2058-6272/ad0c9b","DOIUrl":null,"url":null,"abstract":"Abstract The impurity effects on ion temperature gradient (ITG) driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic electrons using extended fluid code (ExFC) based on a four-field gyro-Landau-fluid (GLF) model. The multispecies form of the normalized GLF equations guaranteeing self-consistent evolution of both bulk ions and impurities is presented. With parametric profiles of the cyclone base case (CBC), well-benchmarked ExFC is employed to perform simulations focusing on different impurity density profiles. For fixed temperature profile, it is found that the turbulent heat diffusivity of bulk ions in quasi-steady state is usually lower than that without impurity, which is contrary to the linear and quasi-linear predictions. The evolutions of the temperature gradient and heat diffusivity exhibit a fast relaxation process, indicating that the destabilization of the outwardly peaked impurity profile is a transient state response. Furthermore, the impurity effects of different profiles can obviously influence the nonlinear critical temperature gradient, which are likely to be dominated by linear effects. These results may evidence the plasma confinement improvement by the impurities probably through adjusting both heat diffusivity and critical temperature gradient.","PeriodicalId":20250,"journal":{"name":"Plasma Science & Technology","volume":"21 11","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gyro-Landau-fluid simulations of impurity effects on ion temperature gradient driven turbulence transport\",\"authors\":\"Yifei Liu, Jiquan Li\",\"doi\":\"10.1088/2058-6272/ad0c9b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The impurity effects on ion temperature gradient (ITG) driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic electrons using extended fluid code (ExFC) based on a four-field gyro-Landau-fluid (GLF) model. The multispecies form of the normalized GLF equations guaranteeing self-consistent evolution of both bulk ions and impurities is presented. With parametric profiles of the cyclone base case (CBC), well-benchmarked ExFC is employed to perform simulations focusing on different impurity density profiles. For fixed temperature profile, it is found that the turbulent heat diffusivity of bulk ions in quasi-steady state is usually lower than that without impurity, which is contrary to the linear and quasi-linear predictions. The evolutions of the temperature gradient and heat diffusivity exhibit a fast relaxation process, indicating that the destabilization of the outwardly peaked impurity profile is a transient state response. Furthermore, the impurity effects of different profiles can obviously influence the nonlinear critical temperature gradient, which are likely to be dominated by linear effects. These results may evidence the plasma confinement improvement by the impurities probably through adjusting both heat diffusivity and critical temperature gradient.\",\"PeriodicalId\":20250,\"journal\":{\"name\":\"Plasma Science & Technology\",\"volume\":\"21 11\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-6272/ad0c9b\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2058-6272/ad0c9b","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Gyro-Landau-fluid simulations of impurity effects on ion temperature gradient driven turbulence transport
Abstract The impurity effects on ion temperature gradient (ITG) driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic electrons using extended fluid code (ExFC) based on a four-field gyro-Landau-fluid (GLF) model. The multispecies form of the normalized GLF equations guaranteeing self-consistent evolution of both bulk ions and impurities is presented. With parametric profiles of the cyclone base case (CBC), well-benchmarked ExFC is employed to perform simulations focusing on different impurity density profiles. For fixed temperature profile, it is found that the turbulent heat diffusivity of bulk ions in quasi-steady state is usually lower than that without impurity, which is contrary to the linear and quasi-linear predictions. The evolutions of the temperature gradient and heat diffusivity exhibit a fast relaxation process, indicating that the destabilization of the outwardly peaked impurity profile is a transient state response. Furthermore, the impurity effects of different profiles can obviously influence the nonlinear critical temperature gradient, which are likely to be dominated by linear effects. These results may evidence the plasma confinement improvement by the impurities probably through adjusting both heat diffusivity and critical temperature gradient.
期刊介绍:
PST assists in advancing plasma science and technology by reporting important, novel, helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field, in a timely manner.
A Publication of the Institute of Plasma Physics, Chinese Academy of Sciences and the Chinese Society of Theoretical and Applied Mechanics.