聚醚醚酮支架3D打印定制控制熔融沉积成型工艺参数优化

IF 3.6 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES
Jingfeng Sun, Mantao Chen, Hui Zhao, Wenxu Zheng, Wuyi Zhou
{"title":"聚醚醚酮支架3D打印定制控制熔融沉积成型工艺参数优化","authors":"Jingfeng Sun, Mantao Chen, Hui Zhao, Wenxu Zheng, Wuyi Zhou","doi":"10.1177/08927057231216745","DOIUrl":null,"url":null,"abstract":"Polyetheretherketone (PEEK), with good biocompatibility and similar mechanical properties to natural bone, is extensively employed in the manufacture of prostheses. However, the precision and mechanical properties of current implants are major challenges for clinical applications. In this study, the effect of pore size, raster angle and printing temperature were investigated on length, width, thickness, material consumption, compressive strength and Young’s modulus. Taguchi design of experiment method was used to reduce the number of experiments and optimize the printing process parameters. Finally, predictive analysis was exploited to give the optimal set of process parameters. Experimental results indicated that the approach applied in this work provided more accurate predictions and control of the response variables. The maximum compressive strength and compressive modulus of PEEK scaffolds reached 43.4 MPa and 253.3 MPa, respectively. Therefore, the methodology of present work has the potential to meet the demand of design precision and manufacture of customized bone substitutes.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"34 28","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing process parameters of fused deposition molding for 3D printing customized control of polyetheretherketone scaffolds\",\"authors\":\"Jingfeng Sun, Mantao Chen, Hui Zhao, Wenxu Zheng, Wuyi Zhou\",\"doi\":\"10.1177/08927057231216745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyetheretherketone (PEEK), with good biocompatibility and similar mechanical properties to natural bone, is extensively employed in the manufacture of prostheses. However, the precision and mechanical properties of current implants are major challenges for clinical applications. In this study, the effect of pore size, raster angle and printing temperature were investigated on length, width, thickness, material consumption, compressive strength and Young’s modulus. Taguchi design of experiment method was used to reduce the number of experiments and optimize the printing process parameters. Finally, predictive analysis was exploited to give the optimal set of process parameters. Experimental results indicated that the approach applied in this work provided more accurate predictions and control of the response variables. The maximum compressive strength and compressive modulus of PEEK scaffolds reached 43.4 MPa and 253.3 MPa, respectively. Therefore, the methodology of present work has the potential to meet the demand of design precision and manufacture of customized bone substitutes.\",\"PeriodicalId\":17446,\"journal\":{\"name\":\"Journal of Thermoplastic Composite Materials\",\"volume\":\"34 28\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermoplastic Composite Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/08927057231216745\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/08927057231216745","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

聚醚醚酮(PEEK)具有良好的生物相容性和与天然骨相似的力学性能,广泛应用于假肢的制造。然而,目前植入物的精度和机械性能是临床应用的主要挑战。研究了孔径、光栅角度、打印温度等因素对材料长度、宽度、厚度、材料消耗、抗压强度和杨氏模量的影响。采用田口设计实验法,减少实验次数,优化打印工艺参数。最后,利用预测分析给出了最优工艺参数集。实验结果表明,该方法能更准确地预测和控制响应变量。PEEK支架的最大抗压强度和抗压模量分别达到43.4 MPa和253.3 MPa。因此,本研究的方法有可能满足定制骨代用品的设计精度和制造需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing process parameters of fused deposition molding for 3D printing customized control of polyetheretherketone scaffolds
Polyetheretherketone (PEEK), with good biocompatibility and similar mechanical properties to natural bone, is extensively employed in the manufacture of prostheses. However, the precision and mechanical properties of current implants are major challenges for clinical applications. In this study, the effect of pore size, raster angle and printing temperature were investigated on length, width, thickness, material consumption, compressive strength and Young’s modulus. Taguchi design of experiment method was used to reduce the number of experiments and optimize the printing process parameters. Finally, predictive analysis was exploited to give the optimal set of process parameters. Experimental results indicated that the approach applied in this work provided more accurate predictions and control of the response variables. The maximum compressive strength and compressive modulus of PEEK scaffolds reached 43.4 MPa and 253.3 MPa, respectively. Therefore, the methodology of present work has the potential to meet the demand of design precision and manufacture of customized bone substitutes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thermoplastic Composite Materials
Journal of Thermoplastic Composite Materials 工程技术-材料科学:复合
CiteScore
8.00
自引率
18.20%
发文量
104
审稿时长
5.9 months
期刊介绍: The Journal of Thermoplastic Composite Materials is a fully peer-reviewed international journal that publishes original research and review articles on polymers, nanocomposites, and particulate-, discontinuous-, and continuous-fiber-reinforced materials in the areas of processing, materials science, mechanics, durability, design, non destructive evaluation and manufacturing science. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信