{"title":"地下水位对地下管线对地面爆炸响应的影响","authors":"Mohamad Taghi Ahmadi, F. Ershadi","doi":"10.24200/sci.2023.60029.6559","DOIUrl":null,"url":null,"abstract":"Groundwater table is a fluctuating factor changing soil structure and affecting pipes' response to any load, such as an explosion. After validation with the results of previous studies, several numerical models were elaborated with ten different groundwater levels and two states of 1. Empty, 2. Pressurized for a buried pipe to investigate this for an explosion load. These simulations were solved by a Finite Element Method (FEM) solver. This research only studies the effects of non-cohesive soils and neglects the semi-saturated part of the soil for simplicity. The pipe's effective stress and plastic strain in each scenario were studied. The results state that the most critical scenario is when the water table is around the pipe crown, whether the pipe is empty or pressurized, with considerable excess stress compared to the absence of groundwater table. The deformation mode is also hugely affected by the water table, changing from local, forming a dent, to non-local. The internal pressure of the pipe also considerably reduces the pipe stresses and strains whether the surrounding soil is saturated or dry. Such results are certainly impactful in efficiently designing buried pipelines, which most existing guidelines and codes have not considered.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of groundwater table on buried pipeline response to a surface explosion\",\"authors\":\"Mohamad Taghi Ahmadi, F. Ershadi\",\"doi\":\"10.24200/sci.2023.60029.6559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Groundwater table is a fluctuating factor changing soil structure and affecting pipes' response to any load, such as an explosion. After validation with the results of previous studies, several numerical models were elaborated with ten different groundwater levels and two states of 1. Empty, 2. Pressurized for a buried pipe to investigate this for an explosion load. These simulations were solved by a Finite Element Method (FEM) solver. This research only studies the effects of non-cohesive soils and neglects the semi-saturated part of the soil for simplicity. The pipe's effective stress and plastic strain in each scenario were studied. The results state that the most critical scenario is when the water table is around the pipe crown, whether the pipe is empty or pressurized, with considerable excess stress compared to the absence of groundwater table. The deformation mode is also hugely affected by the water table, changing from local, forming a dent, to non-local. The internal pressure of the pipe also considerably reduces the pipe stresses and strains whether the surrounding soil is saturated or dry. Such results are certainly impactful in efficiently designing buried pipelines, which most existing guidelines and codes have not considered.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24200/sci.2023.60029.6559\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/sci.2023.60029.6559","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of groundwater table on buried pipeline response to a surface explosion
Groundwater table is a fluctuating factor changing soil structure and affecting pipes' response to any load, such as an explosion. After validation with the results of previous studies, several numerical models were elaborated with ten different groundwater levels and two states of 1. Empty, 2. Pressurized for a buried pipe to investigate this for an explosion load. These simulations were solved by a Finite Element Method (FEM) solver. This research only studies the effects of non-cohesive soils and neglects the semi-saturated part of the soil for simplicity. The pipe's effective stress and plastic strain in each scenario were studied. The results state that the most critical scenario is when the water table is around the pipe crown, whether the pipe is empty or pressurized, with considerable excess stress compared to the absence of groundwater table. The deformation mode is also hugely affected by the water table, changing from local, forming a dent, to non-local. The internal pressure of the pipe also considerably reduces the pipe stresses and strains whether the surrounding soil is saturated or dry. Such results are certainly impactful in efficiently designing buried pipelines, which most existing guidelines and codes have not considered.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.