能量超临界Yang-Mills理论的全局稳定自相似爆破剖面

IF 2.1 2区 数学 Q1 MATHEMATICS
Roland Donninger, Matthias Ostermann
{"title":"能量超临界Yang-Mills理论的全局稳定自相似爆破剖面","authors":"Roland Donninger, Matthias Ostermann","doi":"10.1080/03605302.2023.2263208","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the Cauchy problem for an energy-supercritical nonlinear wave equation in odd space dimensions that arises in equivariant Yang-Mills theory. In each dimension, there is a self-similar finite-time blowup solution to this equation known in closed form. It will be proved that this profile is stable in the whole space under small perturbations of the initial data. The blowup analysis is based on a recently developed coordinate system called hyperboloidal similarity coordinates and depends crucially on growth estimates for the free wave evolution, which will be constructed systematically for odd space dimensions in the first part of this paper. This allows to develop a nonlinear stability theory beyond the singularity.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Globally Stable Self-Similar Blowup Profile in Energy Supercritical Yang-Mills Theory\",\"authors\":\"Roland Donninger, Matthias Ostermann\",\"doi\":\"10.1080/03605302.2023.2263208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the Cauchy problem for an energy-supercritical nonlinear wave equation in odd space dimensions that arises in equivariant Yang-Mills theory. In each dimension, there is a self-similar finite-time blowup solution to this equation known in closed form. It will be proved that this profile is stable in the whole space under small perturbations of the initial data. The blowup analysis is based on a recently developed coordinate system called hyperboloidal similarity coordinates and depends crucially on growth estimates for the free wave evolution, which will be constructed systematically for odd space dimensions in the first part of this paper. This allows to develop a nonlinear stability theory beyond the singularity.\",\"PeriodicalId\":50657,\"journal\":{\"name\":\"Communications in Partial Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Partial Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2023.2263208\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03605302.2023.2263208","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了等变杨-米尔斯理论中出现的奇维能量-超临界非线性波动方程的柯西问题。在每个维度上,这个方程都有一个自相似的有限时间爆破解,已知为封闭形式。将证明在初始数据的微小扰动下,该剖面在整个空间中是稳定的。放大分析是基于一种最近发展起来的称为双曲相似坐标的坐标系,并且主要依赖于自由波演化的增长估计,这将在本文的第一部分中系统地为奇数空间维度构建。这允许发展出超越奇点的非线性稳定性理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Globally Stable Self-Similar Blowup Profile in Energy Supercritical Yang-Mills Theory
This paper is concerned with the Cauchy problem for an energy-supercritical nonlinear wave equation in odd space dimensions that arises in equivariant Yang-Mills theory. In each dimension, there is a self-similar finite-time blowup solution to this equation known in closed form. It will be proved that this profile is stable in the whole space under small perturbations of the initial data. The blowup analysis is based on a recently developed coordinate system called hyperboloidal similarity coordinates and depends crucially on growth estimates for the free wave evolution, which will be constructed systematically for odd space dimensions in the first part of this paper. This allows to develop a nonlinear stability theory beyond the singularity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信