临界间热处理对反应堆压力容器用SA508 Gr.4N Ni-Cr-Mo高强度低合金钢回火脆化的影响

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Seokmin Hong, Cho-Long Lee, Bong-Sang Lee, Hong-Deok Kim, Min-Chul Kim
{"title":"临界间热处理对反应堆压力容器用SA508 Gr.4N Ni-Cr-Mo高强度低合金钢回火脆化的影响","authors":"Seokmin Hong, Cho-Long Lee, Bong-Sang Lee, Hong-Deok Kim, Min-Chul Kim","doi":"10.3365/kjmm.2023.61.10.729","DOIUrl":null,"url":null,"abstract":"To analyze the effects of intercritical heat treatment on the temper embrittlement of SA508 Gr.4N steels, two model alloys with different phosphorus (P) contents were fabricated. Each sample was heat treated by applying a conventional heat treatment process (quenching-tempering) with/without an intercritical heat treatment process (IHT) and a step-cooling heat treatment for temper embrittlement. Then their microstructure and mechanical properties were evaluated. The microstructure of the SA508 Gr.4N model alloy was composed of tempered lower bainite and martensite, and nano-sized precipitates formed both inside and at boundaries. The grain size was reduced when IHT was applied. There was a small difference in tensile properties according to the heat-treatment conditions and P contents, but the difference in Charpy impact properties was large. The heat treatment for temper embrittlement (TE) increased the impact transition temperature, and a very significant increase was observed in steels with a high P content. The increase in transition temperature owing to TE was reduced when IHT was applied. The fractograph analysis of Charpy fractured specimens at transition temperatures showed that an increase in intergranular fracture was main reason for the TE, and that IHT reduced the formation of intergranular fracture. The AES results showed that P-Ni was segregated at grain boundaries, and the level of segregation was reduced by applying IHT. This occurred because the formation of prior austenite grain boundaries by IHT dispersed the P at grain boundaries, and reduced the amount of P segregation.","PeriodicalId":17894,"journal":{"name":"Korean Journal of Metals and Materials","volume":"53 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Intercritical Heat Treatment on the Temper Embrittlement of SA508 Gr.4N Ni-Cr-Mo High Strength Low Alloy Steels for Reactor Pressure Vessels\",\"authors\":\"Seokmin Hong, Cho-Long Lee, Bong-Sang Lee, Hong-Deok Kim, Min-Chul Kim\",\"doi\":\"10.3365/kjmm.2023.61.10.729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To analyze the effects of intercritical heat treatment on the temper embrittlement of SA508 Gr.4N steels, two model alloys with different phosphorus (P) contents were fabricated. Each sample was heat treated by applying a conventional heat treatment process (quenching-tempering) with/without an intercritical heat treatment process (IHT) and a step-cooling heat treatment for temper embrittlement. Then their microstructure and mechanical properties were evaluated. The microstructure of the SA508 Gr.4N model alloy was composed of tempered lower bainite and martensite, and nano-sized precipitates formed both inside and at boundaries. The grain size was reduced when IHT was applied. There was a small difference in tensile properties according to the heat-treatment conditions and P contents, but the difference in Charpy impact properties was large. The heat treatment for temper embrittlement (TE) increased the impact transition temperature, and a very significant increase was observed in steels with a high P content. The increase in transition temperature owing to TE was reduced when IHT was applied. The fractograph analysis of Charpy fractured specimens at transition temperatures showed that an increase in intergranular fracture was main reason for the TE, and that IHT reduced the formation of intergranular fracture. The AES results showed that P-Ni was segregated at grain boundaries, and the level of segregation was reduced by applying IHT. This occurred because the formation of prior austenite grain boundaries by IHT dispersed the P at grain boundaries, and reduced the amount of P segregation.\",\"PeriodicalId\":17894,\"journal\":{\"name\":\"Korean Journal of Metals and Materials\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Metals and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3365/kjmm.2023.61.10.729\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Metals and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3365/kjmm.2023.61.10.729","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了分析临界间热处理对SA508 Gr.4N钢回火脆化的影响,制备了两种不同磷(P)含量的模型合金。每个样品都采用常规热处理工艺(调质)进行热处理,有/没有临界间热处理工艺(IHT)和逐步冷却热处理以回火脆化。然后对其显微组织和力学性能进行了评价。SA508 Gr.4N模型合金的显微组织由回火下贝氏体和马氏体组成,在内部和边界处均形成纳米级析出相。IHT处理使晶粒尺寸减小。热处理条件和P含量不同,拉伸性能差异不大,但夏比冲击性能差异较大。回火脆化(TE)热处理提高了冲击转变温度,在P含量高的钢中有非常显著的提高。应用高温加热后,相变温度的升高幅度减小。对转变温度下Charpy断口试样的断口形貌分析表明,晶间断口的增加是TE的主要原因,高温加热减少了晶间断口的形成。原子发射光谱结果表明,P-Ni在晶界处发生偏析,高温加热使偏析程度降低。这是因为高温下形成的奥氏体晶界使晶界处的P分散,减少了P的偏析量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Intercritical Heat Treatment on the Temper Embrittlement of SA508 Gr.4N Ni-Cr-Mo High Strength Low Alloy Steels for Reactor Pressure Vessels
To analyze the effects of intercritical heat treatment on the temper embrittlement of SA508 Gr.4N steels, two model alloys with different phosphorus (P) contents were fabricated. Each sample was heat treated by applying a conventional heat treatment process (quenching-tempering) with/without an intercritical heat treatment process (IHT) and a step-cooling heat treatment for temper embrittlement. Then their microstructure and mechanical properties were evaluated. The microstructure of the SA508 Gr.4N model alloy was composed of tempered lower bainite and martensite, and nano-sized precipitates formed both inside and at boundaries. The grain size was reduced when IHT was applied. There was a small difference in tensile properties according to the heat-treatment conditions and P contents, but the difference in Charpy impact properties was large. The heat treatment for temper embrittlement (TE) increased the impact transition temperature, and a very significant increase was observed in steels with a high P content. The increase in transition temperature owing to TE was reduced when IHT was applied. The fractograph analysis of Charpy fractured specimens at transition temperatures showed that an increase in intergranular fracture was main reason for the TE, and that IHT reduced the formation of intergranular fracture. The AES results showed that P-Ni was segregated at grain boundaries, and the level of segregation was reduced by applying IHT. This occurred because the formation of prior austenite grain boundaries by IHT dispersed the P at grain boundaries, and reduced the amount of P segregation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Korean Journal of Metals and Materials
Korean Journal of Metals and Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
1.80
自引率
58.30%
发文量
100
审稿时长
4-8 weeks
期刊介绍: The Korean Journal of Metals and Materials is a representative Korean-language journal of the Korean Institute of Metals and Materials (KIM); it publishes domestic and foreign academic papers related to metals and materials, in abroad range of fields from metals and materials to nano-materials, biomaterials, functional materials, energy materials, and new materials, and its official ISO designation is Korean J. Met. Mater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信