Kudla-Millson形式通过Mathai-Quillen形式主义

IF 0.6 3区 数学 Q3 MATHEMATICS
Romain Branchereau
{"title":"Kudla-Millson形式通过Mathai-Quillen形式主义","authors":"Romain Branchereau","doi":"10.4153/s0008414x23000573","DOIUrl":null,"url":null,"abstract":"Abstract A crucial ingredient in the theory of theta liftings of Kudla and Millson is the construction of a $q$ -form $\\varphi_{KM}$ on an orthogonal symmetric space, using Howe's differential operators. This form can be seen as a Thom form of a real oriented vector bundle. We show that the Kudla-Millson form can be recovered from a canonical construction of Mathai and Quillen. A similar result was obtaind by Garcia for signature $(2,q)$ in case the symmetric space is hermitian and we extend it to arbitrary signature.","PeriodicalId":55284,"journal":{"name":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Kudla-Millson form via the Mathai-Quillen formalism\",\"authors\":\"Romain Branchereau\",\"doi\":\"10.4153/s0008414x23000573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A crucial ingredient in the theory of theta liftings of Kudla and Millson is the construction of a $q$ -form $\\\\varphi_{KM}$ on an orthogonal symmetric space, using Howe's differential operators. This form can be seen as a Thom form of a real oriented vector bundle. We show that the Kudla-Millson form can be recovered from a canonical construction of Mathai and Quillen. A similar result was obtaind by Garcia for signature $(2,q)$ in case the symmetric space is hermitian and we extend it to arbitrary signature.\",\"PeriodicalId\":55284,\"journal\":{\"name\":\"Canadian Journal of Mathematics-Journal Canadien De Mathematiques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics-Journal Canadien De Mathematiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x23000573\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x23000573","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

Kudla和Millson的提升理论的一个重要组成部分是利用Howe的微分算子在正交对称空间上构造$q$ -形式$\varphi_{KM}$。这种形式可以看作是实方向矢量束的Thom形式。我们证明Kudla-Millson形式可以从Mathai和Quillen的正则构造中恢复。Garcia在对称空间为厄米时,对签名$(2,q)$也得到了类似的结果,并将其推广到任意签名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Kudla-Millson form via the Mathai-Quillen formalism
Abstract A crucial ingredient in the theory of theta liftings of Kudla and Millson is the construction of a $q$ -form $\varphi_{KM}$ on an orthogonal symmetric space, using Howe's differential operators. This form can be seen as a Thom form of a real oriented vector bundle. We show that the Kudla-Millson form can be recovered from a canonical construction of Mathai and Quillen. A similar result was obtaind by Garcia for signature $(2,q)$ in case the symmetric space is hermitian and we extend it to arbitrary signature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
58
审稿时长
4.5 months
期刊介绍: The Canadian Journal of Mathematics (CJM) publishes original, high-quality research papers in all branches of mathematics. The Journal is a flagship publication of the Canadian Mathematical Society and has been published continuously since 1949. New research papers are published continuously online and collated into print issues six times each year. To be submitted to the Journal, papers should be at least 18 pages long and may be written in English or in French. Shorter papers should be submitted to the Canadian Mathematical Bulletin. Le Journal canadien de mathématiques (JCM) publie des articles de recherche innovants de grande qualité dans toutes les branches des mathématiques. Publication phare de la Société mathématique du Canada, il est publié en continu depuis 1949. En ligne, la revue propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés six fois par année. Les textes présentés au JCM doivent compter au moins 18 pages et être rédigés en anglais ou en français. C’est le Bulletin canadien de mathématiques qui reçoit les articles plus courts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信