一种基于高分辨率网络的植物识别方法

Dang Ngan Ha, Hieu Trung Huynh
{"title":"一种基于高分辨率网络的植物识别方法","authors":"Dang Ngan Ha, Hieu Trung Huynh","doi":"10.15625/1813-9663/18144","DOIUrl":null,"url":null,"abstract":"Plant species recognition plays an important role in agriculture, the pharmaceutical industry, and conservation. The traditional approaches may take days and have difficulties for non-experts. Several computer vision-based models have been proposed, which can partially assist and speed up the plant recognition process. Thanks to the development of data collection and computational systems, the models based on machine learning have considerably improved their performance in the last decades. In this paper, we present a model for plant recognition in Southeast Asia based on the high-resolution network. The evaluation is carried out on a public dataset consisting of 26 different species in Southeast Asia. It shows high accuracy in recognition.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A PLANT RECOGNITION APPROACH USING HIGH RESOLUTION NETWORK\",\"authors\":\"Dang Ngan Ha, Hieu Trung Huynh\",\"doi\":\"10.15625/1813-9663/18144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plant species recognition plays an important role in agriculture, the pharmaceutical industry, and conservation. The traditional approaches may take days and have difficulties for non-experts. Several computer vision-based models have been proposed, which can partially assist and speed up the plant recognition process. Thanks to the development of data collection and computational systems, the models based on machine learning have considerably improved their performance in the last decades. In this paper, we present a model for plant recognition in Southeast Asia based on the high-resolution network. The evaluation is carried out on a public dataset consisting of 26 different species in Southeast Asia. It shows high accuracy in recognition.\",\"PeriodicalId\":15444,\"journal\":{\"name\":\"Journal of Computer Science and Cybernetics\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/1813-9663/18144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/18144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

植物物种识别在农业、医药工业和保护中起着重要的作用。传统的方法可能需要几天的时间,对非专业人士来说也有困难。已经提出了几种基于计算机视觉的模型,这些模型可以部分地辅助和加快植物识别过程。由于数据收集和计算系统的发展,基于机器学习的模型在过去几十年中大大提高了它们的性能。在本文中,我们提出了一个基于高分辨率网络的东南亚植物识别模型。该评估是在一个由东南亚26个不同物种组成的公共数据集上进行的。该方法具有较高的识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A PLANT RECOGNITION APPROACH USING HIGH RESOLUTION NETWORK
Plant species recognition plays an important role in agriculture, the pharmaceutical industry, and conservation. The traditional approaches may take days and have difficulties for non-experts. Several computer vision-based models have been proposed, which can partially assist and speed up the plant recognition process. Thanks to the development of data collection and computational systems, the models based on machine learning have considerably improved their performance in the last decades. In this paper, we present a model for plant recognition in Southeast Asia based on the high-resolution network. The evaluation is carried out on a public dataset consisting of 26 different species in Southeast Asia. It shows high accuracy in recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信