均值-方差保费原则下最优赔付概率最小的再保险:渐近分析

IF 1.4 4区 经济学 Q3 BUSINESS, FINANCE
Pablo Azcue, Xiaoqing Liang, Nora Muler, Virginia R. Young
{"title":"均值-方差保费原则下最优赔付概率最小的再保险:渐近分析","authors":"Pablo Azcue, Xiaoqing Liang, Nora Muler, Virginia R. Young","doi":"10.1137/21m1461666","DOIUrl":null,"url":null,"abstract":"In this paper, we consider an optimal reinsurance problem to minimize the probability of drawdown for the scaled Cramér–Lundberg risk model when the reinsurance premium is computed according to the mean-variance premium principle. We extend the work of Liang, Liang, and Young [Insurance Math. Econom., 92 (2020), pp. 128–146] to the case of minimizing the probability of drawdown. By using the comparison method and the tool of adjustment coefficients, we show that the minimum probability of drawdown for the scaled classical risk model converges to the minimum probability for its diffusion approximation, and the rate of convergence is of order . We further show that using the optimal strategy from the diffusion approximation in the scaled classical risk model is -optimal.","PeriodicalId":48880,"journal":{"name":"SIAM Journal on Financial Mathematics","volume":"71 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Reinsurance to Minimize the Probability of Drawdown under the Mean-Variance Premium Principle: Asymptotic Analysis\",\"authors\":\"Pablo Azcue, Xiaoqing Liang, Nora Muler, Virginia R. Young\",\"doi\":\"10.1137/21m1461666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider an optimal reinsurance problem to minimize the probability of drawdown for the scaled Cramér–Lundberg risk model when the reinsurance premium is computed according to the mean-variance premium principle. We extend the work of Liang, Liang, and Young [Insurance Math. Econom., 92 (2020), pp. 128–146] to the case of minimizing the probability of drawdown. By using the comparison method and the tool of adjustment coefficients, we show that the minimum probability of drawdown for the scaled classical risk model converges to the minimum probability for its diffusion approximation, and the rate of convergence is of order . We further show that using the optimal strategy from the diffusion approximation in the scaled classical risk model is -optimal.\",\"PeriodicalId\":48880,\"journal\":{\"name\":\"SIAM Journal on Financial Mathematics\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Financial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1461666\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Financial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1461666","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑了一个最优再保险问题,当按均值-方差保费原则计算再保险保费时,缩放的cram r - lundberg风险模型的最优再保险问题是使赔付概率最小化。我们扩展了Liang, Liang, and Young [Insurance Math]的工作。的经济。, 92 (2020), pp. 128-146]最小化缩编概率的情况。通过比较方法和调整系数的工具,证明了经典风险模型的最小下降概率收敛于其扩散近似的最小概率,并且收敛速度是有阶的。进一步证明了在经典风险模型中使用扩散近似的最优策略是-最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Reinsurance to Minimize the Probability of Drawdown under the Mean-Variance Premium Principle: Asymptotic Analysis
In this paper, we consider an optimal reinsurance problem to minimize the probability of drawdown for the scaled Cramér–Lundberg risk model when the reinsurance premium is computed according to the mean-variance premium principle. We extend the work of Liang, Liang, and Young [Insurance Math. Econom., 92 (2020), pp. 128–146] to the case of minimizing the probability of drawdown. By using the comparison method and the tool of adjustment coefficients, we show that the minimum probability of drawdown for the scaled classical risk model converges to the minimum probability for its diffusion approximation, and the rate of convergence is of order . We further show that using the optimal strategy from the diffusion approximation in the scaled classical risk model is -optimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Financial Mathematics
SIAM Journal on Financial Mathematics MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.30
自引率
10.00%
发文量
52
期刊介绍: SIAM Journal on Financial Mathematics (SIFIN) addresses theoretical developments in financial mathematics as well as breakthroughs in the computational challenges they encompass. The journal provides a common platform for scholars interested in the mathematical theory of finance as well as practitioners interested in rigorous treatments of the scientific computational issues related to implementation. On the theoretical side, the journal publishes articles with demonstrable mathematical developments motivated by models of modern finance. On the computational side, it publishes articles introducing new methods and algorithms representing significant (as opposed to incremental) improvements on the existing state of affairs of modern numerical implementations of applied financial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信