{"title":"Skellam模型的性质和解释——离散时间竞争种群模型","authors":"Jurģis Šuba, Yukichika Kawata, Andreas Lindén","doi":"10.1002/1438-390x.12169","DOIUrl":null,"url":null,"abstract":"Abstract The Skellam model describes discrete‐time population dynamics of a single species assuming uniform (i.e., random or Poissonian) individual distribution and intraspecific contest competition. Apart from studies on individual‐based models derived from first principles it has been rarely applied in ecological research although in specific situations it may be more appropriate than, for instance, the frequently used Ricker model, which is derived assuming scramble competition among the individuals. In this article, we offer an insight into the first principles underlying the Skellam model and provide an alternative parameterization of the model in terms of two commonly used parameters: intrinsic rate of population increase and carrying capacity. We also provide guidelines and software for fitting the Skellam model to discrete population time series data. In light of these findings, the Skellam model may be a useful alternative for a range of purposes where it has been earlier overlooked.","PeriodicalId":54597,"journal":{"name":"Population Ecology","volume":"1 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties and interpretation of the Skellam model—A discrete‐time contest competition population model\",\"authors\":\"Jurģis Šuba, Yukichika Kawata, Andreas Lindén\",\"doi\":\"10.1002/1438-390x.12169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Skellam model describes discrete‐time population dynamics of a single species assuming uniform (i.e., random or Poissonian) individual distribution and intraspecific contest competition. Apart from studies on individual‐based models derived from first principles it has been rarely applied in ecological research although in specific situations it may be more appropriate than, for instance, the frequently used Ricker model, which is derived assuming scramble competition among the individuals. In this article, we offer an insight into the first principles underlying the Skellam model and provide an alternative parameterization of the model in terms of two commonly used parameters: intrinsic rate of population increase and carrying capacity. We also provide guidelines and software for fitting the Skellam model to discrete population time series data. In light of these findings, the Skellam model may be a useful alternative for a range of purposes where it has been earlier overlooked.\",\"PeriodicalId\":54597,\"journal\":{\"name\":\"Population Ecology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Population Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/1438-390x.12169\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Population Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1438-390x.12169","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Properties and interpretation of the Skellam model—A discrete‐time contest competition population model
Abstract The Skellam model describes discrete‐time population dynamics of a single species assuming uniform (i.e., random or Poissonian) individual distribution and intraspecific contest competition. Apart from studies on individual‐based models derived from first principles it has been rarely applied in ecological research although in specific situations it may be more appropriate than, for instance, the frequently used Ricker model, which is derived assuming scramble competition among the individuals. In this article, we offer an insight into the first principles underlying the Skellam model and provide an alternative parameterization of the model in terms of two commonly used parameters: intrinsic rate of population increase and carrying capacity. We also provide guidelines and software for fitting the Skellam model to discrete population time series data. In light of these findings, the Skellam model may be a useful alternative for a range of purposes where it has been earlier overlooked.
期刊介绍:
Population Ecology, formerly known as Researches on Population Ecology launched in Dec 1952, is the official journal of the Society of Population Ecology. Population Ecology publishes original research articles and reviews (including invited reviews) on various aspects of population ecology, from the individual to the community level. Among the specific fields included are population dynamics and distribution, evolutionary ecology, ecological genetics, theoretical models, conservation biology, agroecosystem studies, and bioresource management. Manuscripts should contain new results of empirical and/or theoretical investigations concerning facts, patterns, processes, mechanisms or concepts of population ecology; those purely descriptive in nature are not suitable for this journal. All manuscripts are reviewed anonymously by two or more referees, and the final editorial decision is made by the Chief Editor or an Associate Editor based on the referees'' evaluations.